def
Function.prod
{α : Type u_1}
{α' : Type u_2}
{β : Type u_3}
{β' : Type u_4}
(f : α → β)
(f' : α' → β')
:
Equations
- Function.prod f f' (x_1, y) = (f x_1, f' y)
Instances For
@[simp]
theorem
Function.prod_val
{α : Type u_1}
{α' : Type u_2}
{β : Type u_3}
{β' : Type u_4}
{f : α → β}
{f' : α' → β'}
{a : α}
{a' : α'}
:
Function.prod f f' (a, a') = (f a, f' a')
theorem
Function.comp_prod_comp
{α : Type u_1}
{α' : Type u_2}
{β : Type u_3}
{β' : Type u_4}
{γ : Type u_5}
{γ' : Type u_6}
{f : α → β}
{f' : α' → β'}
{g : γ → α}
{g' : γ' → α'}
:
Function.prod (f ∘ g) (f' ∘ g') = Function.prod f f' ∘ Function.prod g g'
theorem
Function.prod_inverse
{α : Type u_1}
{α' : Type u_2}
{β : Type u_3}
{β' : Type u_4}
{f : α → β}
{f' : α' → β'}
{g : β → α}
{g' : β' → α'}
(h : Function.IsInverseOf g f)
(h' : Function.IsInverseOf g' f')
:
Function.IsInverseOf (Function.prod g g') (Function.prod f f')
theorem
Function.prod_const
{ι : Type u_1}
{α : Type u_3}
:
((i : ι) → Function.const ι α i) = (ι → α)
def
Function.prod_unique
{ι : Type u_1}
{x : ι → Type u_9}
[inst : Unique ι]
:
Function.Bijection ((i : ι) → x i) (x default)
Equations
- Function.prod_unique = Function.bijection_of_funcs (fun (x : (i : ι) → x i) => x default) (fun (a : x default) (i : ι) => ⋯ ▸ a) ⋯ ⋯
Instances For
def
Function.prod_bool
{α β : Type u_3}
:
Function.Bijection ((i : Bool) → if i = true then α else β) (α × β)
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
Function.unique_prod_of_unique
{ι : Type u_1}
{x : ι → Type u_9}
(h : (i : ι) → Unique (x i))
:
Unique ((i : ι) → x i)
Equations
- Function.unique_prod_of_unique h = { default := fun (i : ι) => default, uniq := ⋯ }
Instances For
@[simp]
def
Function.reindex_by_bij
{ι : Type u_1}
{ι' : Type u_2}
{x : ι → Type u_9}
(f : Function.Bijection ι' ι)
:
Function.Bijection ((i : ι) → x i) ((i' : ι') → x (f.val i'))
Equations
- Function.reindex_by_bij f = ⟨fun (h : (i : ι) → x i) (i' : ι') => h (f.val i'), ⋯⟩
Instances For
theorem
Function.subfamily_covered
{ι : Type u_1}
{ι' : Type u_2}
{x : ι → Type u_9}
{f : Function.Injection ι' ι}
(h : ∀ (i : ι), Nonempty (x i))
:
Function.Surjective fun (a : (i : ι) → x i) (i' : ι') => a (f.val i')
@[simp]
theorem
Function.apply_surjective
{ι : Type u_1}
{x : ι → Type u_9}
(h : ∀ (i : ι), Nonempty (x i))
{i : ι}
:
Function.Surjective fun (a : (i : ι) → x i) => a i
def
Function.prod_map
{ι : Type u_1}
{x : ι → Type u_9}
{y : ι → Type u_10}
(f : (i : ι) → x i → y i)
(a : (i : ι) → x i)
(i : ι)
:
y i
Equations
- Function.prod_map f a i = f i (a i)
Instances For
@[simp]
theorem
Function.prod_map_comp
{ι : Type u_1}
{x : ι → Type u_9}
{y : ι → Type u_10}
{z : ι → Type u_11}
{f : (i : ι) → x i → y i}
{g : (i : ι) → z i → x i}
:
(Function.prod_map fun (i : ι) (c : z i) => f i (g i c)) = Function.prod_map f ∘ Function.prod_map g
@[simp]
theorem
Function.prod_map_id
{ι : Type u_1}
{x : ι → Type u_9}
:
(Function.prod_map fun (x_1 : ι) (a : x x_1) => a) = id
theorem
Function.prod_map_inj
{ι : Type u_1}
{x : ι → Type u_9}
{y : ι → Type u_10}
{f : (i : ι) → x i → y i}
(h : ∀ (i : ι), Function.Injective (f i))
:
@[simp]
theorem
Function.prod_map_inj_iff
{ι : Type u_1}
{x : ι → Type u_9}
{y : ι → Type u_10}
(h : ∀ (i : ι), Nonempty (x i))
{f : (i : ι) → x i → y i}
:
Function.Injective (Function.prod_map f) ↔ ∀ (i : ι), Function.Injective (f i)
def
Function.dep_flip
{ι : Type u_1}
{α : Type u_3}
{x : ι → Type u_9}
:
Function.Bijection ((i : ι) → α → x i) (α → (i : ι) → x i)
Equations
- Function.dep_flip = Function.bijection_of_funcs (fun (f : (i : ι) → α → x i) (a : α) (i : ι) => f i a) (fun (f : α → (i : ι) → x i) (i : ι) (a : α) => f a i) ⋯ ⋯
Instances For
def
Set.IsPartition.prod_assoc
{ι : Type u_1}
{ι' : Type u_2}
{x : ι → Type u_9}
{p : ι' → Set ι}
(h : Set.IsPartition p)
:
Function.Bijection ((i : ι) → x i) ((i' : ι') → (i : ↥(p i')) → x i.val)
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
Prod.prod_assoc
{α : Type u_3}
{β : Type u_5}
{γ : Type u_7}
:
Function.Bijection (α × β × γ) ((α × β) × γ)
Equations
- One or more equations did not get rendered due to their size.