Documentation

BourbakiLean2.Function.Rel

def Relation.proj1 {α : Type u_1} {β : Type u_2} (r : Relation α β) :
rr.domain
Equations
  • r.proj1 (a, snd), h = a,
Instances For
    def Relation.proj2 {α : Type u_1} {β : Type u_2} (r : Relation α β) :
    rr.range
    Equations
    • r.proj2 (a, snd), h = snd,
    Instances For
      @[simp]
      theorem Relation.proj1_val {α : Type u_1} {β : Type u_2} {r : Relation α β} {a : r} :
      (r.proj1 a).val = a.val.fst
      @[simp]
      theorem Relation.proj2_val {α : Type u_1} {β : Type u_2} {r : Relation α β} {a : r} :
      (r.proj2 a).val = a.val.snd
      @[simp]
      theorem Relation.proj1_val' {α : Type u_1} {β : Type u_2} {r : Relation α β} {a : α} {b : β} {h : (a, b) r} :
      (r.proj1 (a, b), h).val = a
      @[simp]
      theorem Relation.proj2_val' {α : Type u_1} {β : Type u_2} {r : Relation α β} {a : α} {b : β} {h : (a, b) r} :
      (r.proj2 (a, b), h).val = b
      theorem Relation.proj1_surj {α : Type u_1} {β : Type u_2} {r : Relation α β} :
      theorem Relation.proj2_surj {α : Type u_1} {β : Type u_2} {r : Relation α β} :
      def Relation.proj1_inj_domain_iff_functional {α : Type u_1} {β : Type u_2} {r : Relation α β} :
      Function.Injective r.proj1 r.domain = Set.univ r.Functional
      Equations
      • =
      Instances For