Documentation

BourbakiLean2.Order.Synonyms

def Op (α : Type u_1) :
Type u_1

put opposite relation etc on a type

Equations
Instances For
    def toOp {α : Type u_1} (x : α) :
    Op α
    Equations
    Instances For
      def fromOp {α : Type u_1} (x : Op α) :
      α
      Equations
      Instances For
        theorem toOp_fromOp {α : Type u_1} {x : Op α} :
        toOp (fromOp x) = x
        theorem fromOp_toOp {α : Type u_1} {x : α} :
        fromOp (toOp x) = x
        instance opLE {α : Type u_1} [LE α] :
        LE (Op α)
        Equations
        • opLE = { le := fun (x y : Op α) => y x }
        instance opLT {α : Type u_1} [LT α] :
        LT (Op α)
        Equations
        • opLT = { lt := fun (x y : Op α) => y < x }
        @[simp]
        theorem toOp_le_iff {α : Type u_1} [LE α] {x y : α} :
        toOp x toOp y y x
        @[simp]
        theorem fromOp_le_iff {α : Type u_1} [LE α] {x y : Op α} :
        @[simp]
        theorem toOp_lt_iff {α : Type u_1} [LT α] {x y : α} :
        toOp x < toOp y y < x
        @[simp]
        theorem fromOp_lt_iff {α : Type u_1} [LT α] {x y : Op α} :
        fromOp x < fromOp y y < x
        structure PartialMap (α : Type u_2) (β : αType u_3) :
        Type (max u_2 u_3)

        extension order for functions

        • carrier : Set α
        • function : (x : self.carrier) → β x.val
        Instances For
          instance piExtendsLE {α : Type u_2} {β : αType u_3} :
          LE (PartialMap α β)
          Equations
          • piExtendsLE = { le := fun (x y : PartialMap α β) => ∃ (h : x.carrier y.carrier), ∀ (a : α) (h' : a x.carrier), y.function a, = x.function a, h' }
          def RelAsLE {α : Type u_2} :
          Relation α αType u_2
          Equations
          Instances For
            instance instLERelAsLE {α : Type u_2} {r : Relation α α} :
            Equations
            • instLERelAsLE = { le := fun (x y : RelAsLE r) => (x, y) r }
            def RelAsLT {α : Type u_2} :
            Relation α αType u_2
            Equations
            Instances For
              instance instLTRelAsLT {α : Type u_2} {r : Relation α α} :
              Equations
              • instLTRelAsLT = { lt := fun (x y : RelAsLT r) => (x, y) r }
              def Pointwise (α : Type u_4) (β : αType u_5) :
              Type (max u_4 u_5)
              Equations
              Instances For
                instance instLEPointwise {α : Type u_2} {β : αType u_3} [(x : α) → LE (β x)] :
                LE (Pointwise α β)
                Equations
                • instLEPointwise = { le := fun (f g : Pointwise α β) => ∀ (x : α), f x g x }