Documentation
BourbakiLean2
.
Order
.
Synonyms
Search
Google site search
return to top
source
Imports
Init
BourbakiLean2.Equivalence
Imported by
Op
toOp
fromOp
toOp_fromOp
fromOp_toOp
opLE
opLT
toOp_le_iff
fromOp_le_iff
toOp_lt_iff
fromOp_lt_iff
PartialMap
piExtendsLE
RelAsLE
instLERelAsLE
RelAsLT
instLTRelAsLT
Pointwise
instLEPointwise
source
def
Op
(α :
Type
u_1)
:
Type
u_1
put opposite relation etc on a type
Equations
Op
α
=
α
Instances For
source
def
toOp
{α :
Type
u_1}
(x :
α
)
:
Op
α
Equations
toOp
x
=
x
Instances For
source
def
fromOp
{α :
Type
u_1}
(x :
Op
α
)
:
α
Equations
fromOp
x
=
x
Instances For
source
theorem
toOp_fromOp
{α :
Type
u_1}
{x :
Op
α
}
:
toOp
(
fromOp
x
)
=
x
source
theorem
fromOp_toOp
{α :
Type
u_1}
{x :
α
}
:
fromOp
(
toOp
x
)
=
x
source
instance
opLE
{α :
Type
u_1}
[
LE
α
]
:
LE
(
Op
α
)
Equations
opLE
=
{
le
:=
fun (
x
y
:
Op
α
) =>
y
≤
x
}
source
instance
opLT
{α :
Type
u_1}
[
LT
α
]
:
LT
(
Op
α
)
Equations
opLT
=
{
lt
:=
fun (
x
y
:
Op
α
) =>
y
<
x
}
source
@[simp]
theorem
toOp_le_iff
{α :
Type
u_1}
[
LE
α
]
{x y :
α
}
:
toOp
x
≤
toOp
y
↔
y
≤
x
source
@[simp]
theorem
fromOp_le_iff
{α :
Type
u_1}
[
LE
α
]
{x y :
Op
α
}
:
fromOp
x
≤
fromOp
y
↔
y
≤
x
source
@[simp]
theorem
toOp_lt_iff
{α :
Type
u_1}
[
LT
α
]
{x y :
α
}
:
toOp
x
<
toOp
y
↔
y
<
x
source
@[simp]
theorem
fromOp_lt_iff
{α :
Type
u_1}
[
LT
α
]
{x y :
Op
α
}
:
fromOp
x
<
fromOp
y
↔
y
<
x
source
structure
PartialMap
(α :
Type
u_2)
(β :
α
→
Type
u_3
)
:
Type
(max u_2 u_3)
extension order for functions
carrier :
Set
α
function :
(
x
:
↥
self
.carrier
) →
β
x
.val
Instances For
source
instance
piExtendsLE
{α :
Type
u_2}
{β :
α
→
Type
u_3
}
:
LE
(
PartialMap
α
β
)
Equations
piExtendsLE
=
{
le
:=
fun (
x
y
:
PartialMap
α
β
) =>
∃ (
h
:
x
.carrier
⊆
y
.carrier
),
∀ (
a
:
α
) (
h'
:
a
∈
x
.carrier
),
y
.function
⟨
a
,
⋯
⟩
=
x
.function
⟨
a
,
h'
⟩
}
source
def
RelAsLE
{α :
Type
u_2}
:
Relation
α
α
→
Type
u_2
Equations
RelAsLE
x
=
α
Instances For
source
instance
instLERelAsLE
{α :
Type
u_2}
{r :
Relation
α
α
}
:
LE
(
RelAsLE
r
)
Equations
instLERelAsLE
=
{
le
:=
fun (
x
y
:
RelAsLE
r
) =>
(
x
,
y
)
∈
r
}
source
def
RelAsLT
{α :
Type
u_2}
:
Relation
α
α
→
Type
u_2
Equations
RelAsLT
x
=
α
Instances For
source
instance
instLTRelAsLT
{α :
Type
u_2}
{r :
Relation
α
α
}
:
LT
(
RelAsLT
r
)
Equations
instLTRelAsLT
=
{
lt
:=
fun (
x
y
:
RelAsLT
r
) =>
(
x
,
y
)
∈
r
}
source
def
Pointwise
(α :
Type
u_4)
(β :
α
→
Type
u_5
)
:
Type
(max u_4 u_5)
Equations
Pointwise
α
β
=
((
x
:
α
) →
β
x
)
Instances For
source
instance
instLEPointwise
{α :
Type
u_2}
{β :
α
→
Type
u_3
}
[
(
x
:
α
) →
LE
(
β
x
)
]
:
LE
(
Pointwise
α
β
)
Equations
instLEPointwise
=
{
le
:=
fun (
f
g
:
Pointwise
α
β
) =>
∀ (
x
:
α
),
f
x
≤
g
x
}