Documentation

BourbakiLean2.Set.Basic

setOf stuff

@[simp]
theorem Set.mem_setOf_iff {α : Type u_1} {p : αProp} {x : α} :
x {y : α | p y} p x
theorem Set.mem_setOf_of {α : Type u_1} {p : αProp} {x : α} (h : p x) :
x {y : α | p y}
theorem Set.of_mem_setOf {α : Type u_1} {p : αProp} {x : α} (h : x {y : α | p y}) :
p x

subsets

@[simp]
theorem Set.subset_refl {α : Type u_1} (x : Set α) :
x x
theorem Set.subset_rfl {α : Type u_1} {x : Set α} :
x x
theorem Set.subset_trans {α : Type u_1} {x y z : Set α} (h : x y) (h' : y z) :
x z
theorem Set.subset_of_eq {α : Type u_1} {x y : Set α} (h : x = y) :
x y
instance Set.instTransSubset {α : Type u_1} :
Trans (fun (x y : Set α) => x y) (fun (x y : Set α) => x y) fun (x y : Set α) => x y
Equations
  • Set.instTransSubset = { trans := }
theorem Set.subset_antisym {α : Type u_1} {x y : Set α} (h : x y) (h' : y x) :
x = y
theorem Set.eq_iff_subset_subset {α : Type u_1} {x y : Set α} :
x = y x y y x
@[simp]
theorem Set.setOf_subset_iff {α : Type u_1} {p : αProp} {x : Set α} :
{y : α | p y} x ∀ (a : α), p aa x
@[simp]
theorem Set.subset_setOf_iff {α : Type u_1} {p : αProp} {x : Set α} :
x {y : α | p y} ∀ (a : α), a xp a
@[simp]
theorem Set.setOf_subset_setOf_iff {α : Type u_1} {p q : αProp} :
{y : α | p y} {y : α | q y} ∀ (a : α), p aq a
@[simp]
theorem Set.setOf_eq_setOf_iff {α : Type u_1} {p q : αProp} :
{y : α | p y} = {y : α | q y} ∀ (a : α), p a q a

simp lemmas

@[simp]
theorem Set.mem_univ {α : Type u_1} {a : α} :
a Set.univ
@[simp]
theorem Set.subset_univ {α : Type u_1} {x : Set α} :
x Set.univ
@[simp]
theorem Set.not_mem_empty {α : Type u_1} {a : α} :
@[simp]
theorem Set.empty_subset {α : Type u_1} {x : Set α} :
@[simp]
theorem Set.mem_singleton_iff {α : Type u_1} {a b : α} :
a {b} a = b
theorem Set.subset_empty_iff {α : Type u_1} {x : Set α} :
theorem Set.univ_subset_iff {α : Type u_1} {x : Set α} :
Set.univ x x = Set.univ

elements of operations

@[simp]
theorem Set.mem_sdiff_iff {α : Type u_1} {x y : Set α} {a : α} :
a x \ y a x ¬a y
@[simp]
theorem Set.mem_compl_iff {α : Type u_1} {x : Set α} {a : α} :
a x ¬a x
@[simp]
theorem Set.mem_powerset_iff {α : Type u_1} {x a : Set α} :
a 𝒫 x a x

complement lemmas

@[simp]
theorem Set.compl_compl {α : Type u_1} {x : Set α} :
@[simp]
theorem Set.sdiff_univ_eq_compl {α : Type u_1} {x : Set α} :
Set.univ \ x = x
theorem Set.subset_compl_iff_subset_compl {α : Type u_1} {x y : Set α} :
x y y x
theorem Set.compl_subset_iff_compl_subset {α : Type u_1} {x y : Set α} :
x y y x

misc

@[simp]
theorem Set.subset_singleton_iff {α : Type u_1} {x : Set α} {a : α} :
x {a} x = {a} x =
@[simp]
theorem Set.empty_not_nonempty {α : Type u_1} :
¬.Nonempty

sets of products

def Set.prod {α : Type u_1} {β : Type u_2} (x : Set α) (y : Set β) :
Set (α × β)
Equations
Instances For
    @[simp]
    theorem Set.mem_prod_iff {α : Type u_1} {β : Type u_2} {a : α} {b : β} {x : Set α} {y : Set β} :
    (a, b) x.prod y a x b y
    @[simp]
    theorem Set.prod_subset_prod_nonempty_iff {α : Type u_1} {β : Type u_2} {x x' : Set α} {y y' : Set β} (hx : x.Nonempty) (hy : y.Nonempty) :
    x.prod y x'.prod y' x x' y y'

    for nonempty sets, products are subsets of another iff the factors are

    @[simp]
    theorem Set.prod_empty_iff {α : Type u_1} {β : Type u_2} {x : Set α} {y : Set β} :
    (x.prod y).Nonempty x.Nonempty y.Nonempty
    @[simp]
    theorem Set.prod_univ_univ {α : Type u_1} {β : Type u_2} :
    Set.univ.prod Set.univ = Set.univ

    nonempty equivalences

    theorem Set.nonempty_iff_neq_empty {α : Type u_1} {x : Set α} :
    x.Nonempty x
    @[simp]
    theorem Set.singleton_neq_empty {α : Type u_1} {a : α} :
    {a}
    @[simp]
    theorem Set.mem_pair_iff {α : Type u_1} {a b c : α} :
    c {a, b} c = a c = b
    instance Set.instUniqueSubtypeMemSingleton {α : Type u_1} {a : α} :
    Unique {a}
    Equations
    • Set.instUniqueSubtypeMemSingleton = { default := a, , uniq := }
    theorem Set.cases_of_empty {α : Type u_1} {p : Set αProp} (h : p ) (h' : ∀ (a : Set α), a.Nonemptyp a) (a : Set α) :
    p a