Equations
- Set.iUnion x = {a : α | ∃ (i : ι), a ∈ x i}
Instances For
Equations
- Set.iInter x = {a : α | ∀ (i : ι), a ∈ x i}
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Unexpander for set builder notation.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Unexpander for set builder notation.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
@[simp]
theorem
Set.iUnion_index_change_surj
{α : Type u_1}
{ι : Type u_3}
{ι' : Type u_4}
{x : ι → Set α}
{f : ι' → ι}
(h : Function.Surjective f)
:
⋃ i' : ι', x (f i') = ⋃ i : ι, x i
theorem
Set.iInter_index_change_surj
{α : Type u_1}
{ι : Type u_3}
{ι' : Type u_4}
{x : ι → Set α}
{f : ι' → ι}
(h : Function.Surjective f)
:
⋂ i' : ι', x (f i') = ⋂ i : ι, x i
theorem
Relation.rel_iUnion_image
{α : Type u_1}
{β : Type u_2}
{ι : Type u_3}
{x : Set α}
{r : ι → Relation α β}
:
Relation.image (⋃ i : ι, r i) x = ⋃ i : ι, (r i).image x
theorem
Relation.rel_iUnion_preimage
{α : Type u_1}
{β : Type u_2}
{ι : Type u_3}
{y : Set β}
{r : ι → Relation α β}
:
Relation.preimage (⋃ i : ι, r i) y = ⋃ i : ι, (r i).preimage y
theorem
Relation.rel_iInter_image
{α : Type u_1}
{β : Type u_2}
{ι : Type u_3}
{r : ι → Relation α β}
{a : α}
:
Relation.image (⋂ i : ι, r i) {a} = ⋂ i : ι, (r i).image {a}
theorem
Relation.rel_iInter_preimage
{α : Type u_1}
{β : Type u_2}
{ι : Type u_3}
{r : ι → Relation α β}
{b : β}
:
Relation.preimage (⋂ i : ι, r i) {b} = ⋂ i : ι, (r i).preimage {b}
theorem
Relation.iUnion_comp
{α : Type u_1}
{β : Type u_2}
{ι : Type u_3}
{γ : Type u_5}
{r : ι → Relation α β}
{t : Relation γ α}
:
Relation.comp (⋃ i : ι, r i) t = ⋃ i : ι, (r i).comp t
theorem
Set.Disjoint.preimage
{α : Type u_1}
{β : Type u_2}
{ι : Type u_3}
{f : α → β}
{y : ι → Set β}
(h : Set.Disjoint y)
:
Set.Disjoint (Set.preimage f ∘ y)
theorem
Set.Disjoint.inj_of_nonempty
{α : Type u_1}
{ι : Type u_3}
{x : ι → Set α}
(h : Set.Disjoint x)
(h' : ∀ (i : ι), (x i).Nonempty)
: