Documentation

BourbakiLean2.Set.Operations

def Set.iUnion {α : Type u_1} {ι : Type u_3} (x : ιSet α) :
Set α
Equations
Instances For
    def Set.iInter {α : Type u_1} {ι : Type u_3} (x : ιSet α) :
    Set α
    Equations
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          Unexpander for set builder notation.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                Unexpander for set builder notation.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem Set.mem_iUnion_iff {α : Type u_1} {ι : Type u_3} {a : α} {x : ιSet α} :
                  a i : ι, x i ∃ (i : ι), a x i
                  theorem Set.mem_iUnion_of {α : Type u_1} {ι : Type u_3} {a : α} {i : ι} {x : ιSet α} (h : a x i) :
                  a i : ι, x i
                  theorem Set.of_mem_iUnion {α : Type u_1} {ι : Type u_3} {a : α} {x : ιSet α} (h : a i : ι, x i) :
                  ∃ (i : ι), a x i
                  @[simp]
                  theorem Set.subset_iUnion {α : Type u_1} {ι : Type u_3} {i : ι} {x : ιSet α} :
                  x i i : ι, x i
                  @[simp]
                  theorem Set.iUnion_subset_iff_all {α : Type u_1} {ι : Type u_3} {x : ιSet α} {y : Set α} :
                  i : ι, x i y ∀ (i : ι), x i y
                  theorem Set.iUnion_empty_index {α : Type u_1} {ι : Type u_3} {x : ιSet α} (h : ιFalse) :
                  i : ι, x i =
                  @[simp]
                  theorem Set.iUnion_empty_iff {α : Type u_1} {ι : Type u_3} {x : ιSet α} :
                  i : ι, x i = ∀ (i : ι), x i =
                  @[simp]
                  theorem Set.mem_iInter_iff {α : Type u_1} {ι : Type u_3} {a : α} {x : ιSet α} :
                  a i : ι, x i ∀ (i : ι), a x i
                  theorem Set.mem_iInter_of {α : Type u_1} {ι : Type u_3} {a : α} {x : ιSet α} (h : ∀ (i : ι), a x i) :
                  a i : ι, x i
                  theorem Set.of_mem_iInter {α : Type u_1} {ι : Type u_3} {a : α} {i : ι} {x : ιSet α} (h : a i : ι, x i) :
                  a x i
                  @[simp]
                  theorem Set.iInter_subset {α : Type u_1} {ι : Type u_3} {i : ι} {x : ιSet α} :
                  i : ι, x i x i
                  @[simp]
                  theorem Set.subset_iInter_iff_all {α : Type u_1} {ι : Type u_3} {x : ιSet α} {y : Set α} :
                  y i : ι, x i ∀ (i : ι), y x i
                  theorem Set.iInter_empty_index {α : Type u_1} {ι : Type u_3} {x : ιSet α} (h : ιFalse) :
                  i : ι, x i = Set.univ
                  @[simp]
                  theorem Set.iInter_univ_iff {α : Type u_1} {ι : Type u_3} {x : ιSet α} :
                  i : ι, x i = Set.univ ∀ (i : ι), x i = Set.univ
                  @[simp]
                  theorem Set.iUnion_singleton {α : Type u_1} {x : UnitSet α} :
                  i : Unit, x i = x PUnit.unit
                  @[simp]
                  theorem Set.iInter_singleton {α : Type u_1} {x : UnitSet α} :
                  i : Unit, x i = x PUnit.unit
                  theorem Set.iUnion_singletons {α : Type u_1} {x : Set α} :
                  a : x, {a.val} = x
                  theorem Set.iUnion_index_change_subset {α : Type u_1} {ι : Type u_3} {ι' : Type u_4} {x : ιSet α} {f : ι'ι} :
                  i' : ι', x (f i') i : ι, x i
                  theorem Set.iUnion_index_change_surj {α : Type u_1} {ι : Type u_3} {ι' : Type u_4} {x : ιSet α} {f : ι'ι} (h : Function.Surjective f) :
                  i' : ι', x (f i') = i : ι, x i
                  theorem Set.iInter_subset_index_change {α : Type u_1} {ι : Type u_3} {ι' : Type u_4} {x : ιSet α} {f : ι'ι} :
                  i : ι, x i i' : ι', x (f i')
                  theorem Set.iInter_index_change_surj {α : Type u_1} {ι : Type u_3} {ι' : Type u_4} {x : ιSet α} {f : ι'ι} (h : Function.Surjective f) :
                  i' : ι', x (f i') = i : ι, x i
                  theorem Set.iUnion_constant {α : Type u_1} {ι : Type u_3} {i : ι} {x : ιSet α} (h : ∀ (i i' : ι), x i = x i') :
                  i : ι, x i = x i
                  theorem Set.iInter_constant {α : Type u_1} {ι : Type u_3} {i : ι} {x : ιSet α} (h : ∀ (i i' : ι), x i = x i') :
                  i : ι, x i = x i
                  theorem Set.iUnion_index_mono {α : Type u_1} {ι : Type u_3} {x : ιSet α} {p : ιProp} :
                  i : { i : ι // p i }, x i.val i : ι, x i
                  theorem Set.iInter_index_mono {α : Type u_1} {ι : Type u_3} {x : ιSet α} {p : ιProp} :
                  i : ι, x i i : { i : ι // p i }, x i.val
                  theorem Set.iInter_subset_iUnion {α : Type u_1} {ι : Type u_3} {x : ιSet α} [Nonempty ι] :
                  i : ι, x i i : ι, x i
                  theorem Set.iUnion_mono {α : Type u_1} {ι : Type u_3} {x x' : ιSet α} (h : ∀ (i : ι), x i x' i) :
                  i : ι, x i i : ι, x' i
                  theorem Set.iInter_mono {α : Type u_1} {ι : Type u_3} {x x' : ιSet α} (h : ∀ (i : ι), x i x' i) :
                  i : ι, x i i : ι, x' i
                  theorem Set.iUnion_assoc {α : Type u_1} {ι : Type u_3} {ι' : Type u_4} {x : ιι'Set α} :
                  i : ι × ι', x i.fst i.snd = j : ι, i : ι', x j i
                  theorem Set.iInter_assoc {α : Type u_1} {ι : Type u_3} {ι' : Type u_4} {x : ιι'Set α} :
                  i : ι × ι', x i.fst i.snd = j : ι, i : ι', x j i
                  theorem Set.iUnion_compl {α : Type u_1} {ι : Type u_3} {x : ιSet α} :
                  i : ι, (x i) = (⋂ i : ι, x i)
                  theorem Set.iInter_compl {α : Type u_1} {ι : Type u_3} {x : ιSet α} :
                  i : ι, (x i) = (⋃ i : ι, x i)
                  theorem Set.sprod_iUnion {α : Type u_1} {β : Type u_2} {ι : Type u_3} {ι' : Type u_4} {x : ιSet α} {y' : ι'Set β} :
                  (⋃ i : ι, x i).prod (⋃ i : ι', y' i) = j : ι × ι', (x j.fst).prod (y' j.snd)
                  theorem Set.sprod_iInter {α : Type u_1} {β : Type u_2} {ι : Type u_3} {ι' : Type u_4} {x : ιSet α} {y' : ι'Set β} [inst : Nonempty ι] [inst' : Nonempty ι'] :
                  (⋂ i : ι, x i).prod (⋂ i : ι', y' i) = j : ι × ι', (x j.fst).prod (y' j.snd)
                  @[simp]
                  theorem Set.mem_union_iff {α : Type u_1} {a : α} {x x' : Set α} :
                  a x x' a x a x'
                  @[simp]
                  theorem Set.mem_inter_iff {α : Type u_1} {a : α} {x x' : Set α} :
                  a x x' a x a x'
                  theorem Set.union_eq_iUnion {α : Type u_1} {x x' : Set α} :
                  x x' = i : Bool, if i = true then x else x'
                  theorem Set.inter_eq_iInter {α : Type u_1} {x x' : Set α} :
                  x x' = i : Bool, if i = true then x else x'
                  theorem Set.union_comm {α : Type u_1} {x x' : Set α} :
                  x x' = x' x
                  @[simp]
                  theorem Set.union_assoc {α : Type u_1} {x x' x'' : Set α} :
                  x x' x'' = x (x' x'')
                  theorem Set.inter_comm {α : Type u_1} {x x' : Set α} :
                  x x' = x' x
                  @[simp]
                  theorem Set.inter_assoc {α : Type u_1} {x x' x'' : Set α} :
                  x x' x'' = x (x' x'')
                  @[simp]
                  theorem Set.subset_union_left {α : Type u_1} {x x' : Set α} :
                  x x x'
                  @[simp]
                  theorem Set.subset_union_right {α : Type u_1} {x x' : Set α} :
                  x' x x'
                  @[simp]
                  theorem Set.inter_subset_left {α : Type u_1} {x x' : Set α} :
                  x x' x
                  @[simp]
                  theorem Set.inter_subset_right {α : Type u_1} {x x' : Set α} :
                  x x' x'
                  @[simp]
                  theorem Set.inter_subset_union {α : Type u_1} {x x' : Set α} :
                  x x' x x'
                  theorem Set.subset_inter_iff {α : Type u_1} {x x' x'' : Set α} :
                  x x' x'' x x' x x''
                  theorem Set.union_subset_iff {α : Type u_1} {x x' x'' : Set α} :
                  x x' x'' x x'' x' x''
                  @[simp]
                  theorem Set.union_eq_iff_subset_left {α : Type u_1} {x x' : Set α} :
                  x x' = x x' x
                  @[simp]
                  theorem Set.union_eq_iff_subset_right {α : Type u_1} {x x' : Set α} :
                  x x' = x' x x'
                  @[simp]
                  theorem Set.inter_eq_iff_subset_left {α : Type u_1} {x x' : Set α} :
                  x x' = x x x'
                  @[simp]
                  theorem Set.inter_eq_iff_subset_right {α : Type u_1} {x x' : Set α} :
                  x x' = x' x' x
                  @[simp]
                  theorem Set.union_self {α : Type u_1} {x : Set α} :
                  x x = x
                  @[simp]
                  theorem Set.inter_self {α : Type u_1} {x : Set α} :
                  x x = x
                  theorem Set.union_inter_distrib_right {α : Type u_1} {x x' x'' : Set α} :
                  x x' x'' = (x x') (x x'')
                  theorem Set.union_inter_distrib_left {α : Type u_1} {x x' x'' : Set α} :
                  x x' x'' = (x x'') (x' x'')
                  theorem Set.inter_union_distrib_right {α : Type u_1} {x x' x'' : Set α} :
                  x (x' x'') = x x' x x''
                  theorem Set.inter_union_distrib_left {α : Type u_1} {x x' x'' : Set α} :
                  (x x') x'' = x x'' x' x''
                  @[simp]
                  theorem Set.inter_union_absorb_right_right {α : Type u_1} {x x' : Set α} :
                  x (x' x) = x
                  @[simp]
                  theorem Set.inter_union_absorb_right_left {α : Type u_1} {x x' : Set α} :
                  x (x x') = x
                  @[simp]
                  theorem Set.inter_union_absorb_left_right {α : Type u_1} {x x' : Set α} :
                  (x' x) x = x
                  @[simp]
                  theorem Set.inter_union_absorb_left_left {α : Type u_1} {x x' : Set α} :
                  (x x') x = x
                  @[simp]
                  theorem Set.union_inter_absorb_right_right {α : Type u_1} {x x' : Set α} :
                  x x' x = x
                  @[simp]
                  theorem Set.union_inter_absorb_right_left {α : Type u_1} {x x' : Set α} :
                  x x x' = x
                  @[simp]
                  theorem Set.union_inter_absorb_left_right {α : Type u_1} {x x' : Set α} :
                  x' x x = x
                  @[simp]
                  theorem Set.union_inter_absorb_left_left {α : Type u_1} {x x' : Set α} :
                  x x' x = x
                  @[simp]
                  theorem Set.union_univ {α : Type u_1} {x : Set α} :
                  x Set.univ = Set.univ
                  @[simp]
                  theorem Set.univ_union {α : Type u_1} {x : Set α} :
                  Set.univ x = Set.univ
                  @[simp]
                  theorem Set.union_empty {α : Type u_1} {x : Set α} :
                  x = x
                  @[simp]
                  theorem Set.empty_union {α : Type u_1} {x : Set α} :
                  x = x
                  @[simp]
                  theorem Set.inter_univ {α : Type u_1} {x : Set α} :
                  x Set.univ = x
                  @[simp]
                  theorem Set.univ_inter {α : Type u_1} {x : Set α} :
                  Set.univ x = x
                  @[simp]
                  theorem Set.inter_empty {α : Type u_1} {x : Set α} :
                  @[simp]
                  theorem Set.empty_inter {α : Type u_1} {x : Set α} :
                  @[simp]
                  theorem Set.compl_empty {α : Type u_1} :
                  = Set.univ
                  @[simp]
                  theorem Set.compl_univ {α : Type u_1} :
                  Set.univ =
                  theorem Set.compl_inter {α : Type u_1} {x x' : Set α} :
                  (x x') = x x'
                  theorem Set.compl_union {α : Type u_1} {x x' : Set α} :
                  (x x') = x x'
                  theorem Set.sdiff_union {α : Type u_1} {x x' x'' : Set α} :
                  x \ (x' x'') = x \ x' (x \ x'')
                  theorem Set.sdiff_inter {α : Type u_1} {x x' x'' : Set α} :
                  x \ (x' x'') = x \ x' x \ x''
                  @[simp]
                  theorem Set.sdiff_empty {α : Type u_1} {x : Set α} :
                  x \ = x
                  @[simp]
                  theorem Set.empty_sdiff {α : Type u_1} {x : Set α} :
                  @[simp]
                  theorem Set.sdiff_self {α : Type u_1} {x : Set α} :
                  x \ x =
                  theorem Set.sdiff_eq_inter_compl {α : Type u_1} {x x' : Set α} :
                  x \ x' = x x'
                  theorem Set.union_sdiff {α : Type u_1} {x x' x'' : Set α} :
                  (x x') \ x'' = x \ x'' x' \ x''
                  theorem Set.inter_sdiff {α : Type u_1} {x x' x'' : Set α} :
                  (x x') \ x'' = x \ x'' (x' \ x'')
                  theorem Set.sdiff_sdiff_right {α : Type u_1} {x x' x'' : Set α} :
                  x \ (x' \ x'') = x \ x' x x''
                  theorem Set.sdiff_sdiff_left {α : Type u_1} {x x' x'' : Set α} :
                  (x \ x') \ x'' = x \ (x' x'')
                  @[simp]
                  theorem Set.union_with_compl {α : Type u_1} {x : Set α} :
                  x x = Set.univ
                  @[simp]
                  theorem Set.inter_with_compl {α : Type u_1} {x : Set α} :
                  theorem Set.union_mono {α : Type u_1} {x x' x'' x''' : Set α} (h : x x') (h' : x'' x''') :
                  x x'' x' x'''
                  theorem Set.union_mono_left {α : Type u_1} {x x' x'' : Set α} (h : x x') :
                  x x'' x' x''
                  theorem Set.union_mono_right {α : Type u_1} {x x' x'' : Set α} (h : x' x'') :
                  x x' x x''
                  theorem Set.inter_mono {α : Type u_1} {x x' x'' x''' : Set α} (h : x x') (h' : x'' x''') :
                  x x'' x' x'''
                  theorem Set.inter_mono_left {α : Type u_1} {x x' x'' : Set α} (h : x x') :
                  x x'' x' x''
                  theorem Set.inter_mono_right {α : Type u_1} {x x' x'' : Set α} (h : x' x'') :
                  x x' x x''
                  theorem Set.sdiff_mono_left {α : Type u_1} {x x' x'' : Set α} (h : x x') :
                  x \ x'' x' \ x''
                  theorem Set.sdiff_mono_right {α : Type u_1} {x x' x'' : Set α} (h : x' x'') :
                  x \ x'' x \ x'
                  @[simp]
                  theorem Set.sdiff_subset {α : Type u_1} {x x' : Set α} :
                  x \ x' x
                  @[simp]
                  theorem Set.sdiff_subset_compl {α : Type u_1} {x x' : Set α} :
                  x \ x' x'
                  theorem Set.compl_inj {α : Type u_1} {x x' : Set α} (h : x = x') :
                  x = x'
                  theorem Set.eq_compl_of {α : Type u_1} {x x' : Set α} (h : x x' = Set.univ) (h' : x x' = ) :
                  x' = x
                  theorem Relation.iUnion_image {α : Type u_1} {β : Type u_2} {ι : Type u_3} {x : ιSet α} {r : Relation α β} :
                  r.image (⋃ i : ι, x i) = i : ι, r.image (x i)
                  theorem Relation.iUnion_preimage {α : Type u_1} {β : Type u_2} {ι : Type u_3} {y : ιSet β} {r : Relation α β} :
                  r.preimage (⋃ i : ι, y i) = i : ι, r.preimage (y i)
                  theorem Relation.subset_iInter_image {α : Type u_1} {β : Type u_2} {ι : Type u_3} {x : ιSet α} {r : Relation α β} :
                  r.image (⋂ i : ι, x i) i : ι, r.image (x i)
                  theorem Relation.subset_iInter_preimage {α : Type u_1} {β : Type u_2} {ι : Type u_3} {y : ιSet β} {r : Relation α β} :
                  r.preimage (⋂ i : ι, y i) i : ι, r.preimage (y i)
                  theorem Relation.union_image {α : Type u_1} {β : Type u_2} {r : Relation α β} {x x' : Set α} :
                  r.image (x x') = r.image x r.image x'
                  theorem Relation.subset_inter_image {α : Type u_1} {β : Type u_2} {r : Relation α β} {x x' : Set α} :
                  r.image (x x') r.image x r.image x'
                  theorem Relation.union_preimage {α : Type u_1} {β : Type u_2} {r : Relation α β} {y y' : Set β} :
                  r.preimage (y y') = r.preimage y r.preimage y'
                  theorem Relation.subset_inter_preimage {α : Type u_1} {β : Type u_2} {r : Relation α β} {y y' : Set β} :
                  r.preimage (y y') r.preimage y r.preimage y'
                  theorem Relation.rel_iUnion_image {α : Type u_1} {β : Type u_2} {ι : Type u_3} {x : Set α} {r : ιRelation α β} :
                  Relation.image (⋃ i : ι, r i) x = i : ι, (r i).image x
                  theorem Relation.rel_iUnion_preimage {α : Type u_1} {β : Type u_2} {ι : Type u_3} {y : Set β} {r : ιRelation α β} :
                  Relation.preimage (⋃ i : ι, r i) y = i : ι, (r i).preimage y
                  theorem Relation.rel_iInter_image {α : Type u_1} {β : Type u_2} {ι : Type u_3} {r : ιRelation α β} {a : α} :
                  Relation.image (⋂ i : ι, r i) {a} = i : ι, (r i).image {a}
                  theorem Relation.rel_iInter_preimage {α : Type u_1} {β : Type u_2} {ι : Type u_3} {r : ιRelation α β} {b : β} :
                  Relation.preimage (⋂ i : ι, r i) {b} = i : ι, (r i).preimage {b}
                  theorem Relation.iUnion_comp {α : Type u_1} {β : Type u_2} {ι : Type u_3} {γ : Type u_5} {r : ιRelation α β} {t : Relation γ α} :
                  Relation.comp (⋃ i : ι, r i) t = i : ι, (r i).comp t
                  theorem Relation.comp_iUnion {α : Type u_1} {β : Type u_2} {ι : Type u_3} {γ : Type u_5} {r : ιRelation α β} {s : Relation β γ} :
                  s.comp (⋃ i : ι, r i) = i : ι, s.comp (r i)
                  theorem Relation.union_comp {α : Type u_1} {β : Type u_2} {γ : Type u_5} {t : Relation γ α} {r r' : Relation α β} :
                  (r r').comp t = r.comp t r'.comp t
                  theorem Relation.comp_union {α : Type u_1} {β : Type u_2} {γ : Type u_5} {s : Relation β γ} {r r' : Relation α β} :
                  s.comp (r r') = s.comp r s.comp r'
                  theorem Relation.rel_union_image {α : Type u_1} {β : Type u_2} {x : Set α} {r r' : Relation α β} :
                  (r r').image x = r.image x r'.image x
                  theorem Relation.rel_union_preimage {α : Type u_1} {β : Type u_2} {y : Set β} {r r' : Relation α β} :
                  (r r').preimage y = r.preimage y r'.preimage y
                  theorem Relation.rel_inter_image {α : Type u_1} {β : Type u_2} {r r' : Relation α β} {a : α} :
                  (r r').image {a} = r.image {a} r'.image {a}
                  theorem Relation.rel_inter_preimage {α : Type u_1} {β : Type u_2} {r r' : Relation α β} {b : β} :
                  (r r').preimage {b} = r.preimage {b} r'.preimage {b}
                  theorem Relation.comp_inter_subset {α : Type u_1} {β : Type u_2} {γ : Type u_5} {s : Relation β γ} {r : Relation α β} {t : Relation α γ} :
                  s.comp r t (s t.comp r.inv).comp (r s.inv.comp t)
                  def Set.Disjoint {α : Type u_1} {ι : Type u_3} (x : ιSet α) :
                  Equations
                  Instances For
                    theorem Set.Disjoint.eq_of_subset_elem {α : Type u_1} {ι : Type u_3} {a : α} {x : ιSet α} (hd : Set.Disjoint x) {y : Set α} (h : y.Nonempty) {i i' : ι} (ha : a x i) (ha' : a y) (h'' : y x i') :
                    i = i'
                    theorem Set.iUnion_image {α : Type u_1} {β : Type u_2} {ι : Type u_3} {x : ιSet α} {f : αβ} :
                    f '' i : ι, x i = i : ι, f '' x i
                    theorem Set.iUnion_preimage {α : Type u_1} {β : Type u_2} {ι : Type u_3} {y : ιSet β} {f : αβ} :
                    f ⁻¹' i : ι, y i = i : ι, f ⁻¹' y i
                    theorem Set.subset_iInter_image {α : Type u_1} {β : Type u_2} {ι : Type u_3} {x : ιSet α} {f : αβ} :
                    f '' i : ι, x i i : ι, f '' x i
                    theorem Set.iInter_preimage {α : Type u_1} {β : Type u_2} {ι : Type u_3} {y : ιSet β} {f : αβ} :
                    f ⁻¹' i : ι, y i = i : ι, f ⁻¹' y i
                    theorem Set.iInter_image_of_inj {α : Type u_1} {β : Type u_2} {ι : Type u_3} {x : ιSet α} {f : αβ} [Nonempty ι] (h : Function.Injective f) :
                    f '' i : ι, x i = i : ι, f '' x i
                    theorem Set.union_image {α : Type u_1} {β : Type u_2} {f : αβ} {x x' : Set α} :
                    f '' (x x') = f '' x f '' x'
                    theorem Set.union_preimage {α : Type u_1} {β : Type u_2} {f : αβ} {y y' : Set β} :
                    f ⁻¹' (y y') = f ⁻¹' y f ⁻¹' y'
                    theorem Set.subset_inter_image {α : Type u_1} {β : Type u_2} {f : αβ} {x x' : Set α} :
                    f '' (x x') f '' x f '' x'
                    theorem Set.inter_preimage {α : Type u_1} {β : Type u_2} {f : αβ} {y y' : Set β} :
                    f ⁻¹' (y y') = f ⁻¹' y f ⁻¹' y'
                    theorem Set.sdiff_preimage {α : Type u_1} {β : Type u_2} {f : αβ} {y y' : Set β} :
                    f ⁻¹' (y \ y') = f ⁻¹' y \ f ⁻¹' y'
                    theorem Set.compl_preimage {α : Type u_1} {β : Type u_2} {f : αβ} {y : Set β} :
                    theorem Set.sdiff_image_inj {α : Type u_1} {β : Type u_2} {f : αβ} {x x' : Set α} (h : Function.Injective f) :
                    f '' (x \ x') = f '' x \ f '' x'
                    theorem Set.Disjoint.preimage {α : Type u_1} {β : Type u_2} {ι : Type u_3} {f : αβ} {y : ιSet β} (h : Set.Disjoint y) :
                    theorem Set.Disjoint.inj_of_nonempty {α : Type u_1} {ι : Type u_3} {x : ιSet α} (h : Set.Disjoint x) (h' : ∀ (i : ι), (x i).Nonempty) :
                    theorem Set.Set.iUnion_iInter_distrib {α : Type u_5} {ι : Type u_6} {ι' : ιType} {x : (i : ι) → ι' iSet α} :
                    i : ι, i' : ι' i, x i i' = f : (i : ι) → ι' i, i : ι, x i (f i)
                    theorem Set.Set.iInter_iUnion_distrib {α : Type u_5} {ι : Type u_6} {ι' : ιType} {x : (i : ι) → ι' iSet α} :
                    i : ι, i' : ι' i, x i i' = f : (i : ι) → ι' i, i : ι, x i (f i)
                    theorem Set.Set.iInter_union_distrib {α : Type u_7} {ι : Type u_8} {ι' : Type u_9} {x : ιSet α} {x' : ι'Set α} :
                    (⋂ i : ι, x i) i' : ι', x' i' = ii' : ι × ι', x ii'.fst x' ii'.snd
                    theorem Set.Set.iUnion_inter_distrib {α : Type u_7} {ι : Type u_8} {ι' : Type u_9} {x : ιSet α} {x' : ι'Set α} :
                    (⋃ i : ι, x i) i' : ι', x' i' = ii' : ι × ι', x ii'.fst x' ii'.snd