Documentation

BourbakiLean2.Set.Sum

def Set.sum_to_union {α : Type u_1} {ι : Type u_3} {x : ιSet α} :
(i : ι) × (x i)(⋃ i : ι, x i)
Equations
Instances For
    @[simp]
    theorem Set.sum_to_union_surj {α : Type u_1} {ι : Type u_3} {x : ιSet α} :
    Function.Surjective Set.sum_to_union
    theorem Set.sum_to_union_inj_of_disjoint {α : Type u_1} {ι : Type u_3} {x : ιSet α} (h : ∀ (i j : ι), i jx i x j = ) :
    Function.Injective Set.sum_to_union
    theorem Set.sum_to_union_bij_of_disjoint {α : Type u_1} {ι : Type u_3} {x : ιSet α} (h : ∀ (i j : ι), i jx i x j = ) :
    Function.Bijective Set.sum_to_union
    def sigma_reindex_bij {ι : Type u_8} {ι' : Type u_9} {x : ιType u} (f : Function.Bijection ι' ι) :
    Equations
    Instances For
      noncomputable def Set.IsPartition.sigma_assoc {ι : Type u_8} {ι' : Type u_9} {x : ιType u_11} {p : ι'Set ι} (h : Set.IsPartition p) :
      Function.Bijection ((i : ι) × x i) ((i' : ι') × (i : (p i')) × x i.val)
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        def Sigma.prod_distrib {ι : Type u_8} {ι' : ιType u_12} {x : (i : ι) → ι' iType u_13} :
        Function.Bijection ((i : ι) → (i' : ι' i) × x i i') ((y : (i : ι) → ι' i) × ((i : ι) → x i (y i)))
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For