theorem
Combinatorics.Injective.cardinality_inj'
{m n : Nat}
{β : Type u}
[Finite β]
(h2 : (Finite.ftype β).cardinality = n)
{α : Type u}
[Finite α]
:
(Finite.ftype α).cardinality = m →
m ≤ n → (n - m).factorial * (Finite.ftype (Function.Injection α β)).cardinality = n.factorial
theorem
Combinatorics.Injective.cardinality_inj
{α β : Type u}
[Finite α]
[Finite β]
(h : (Finite.ftype α).cardinality ≤ (Finite.ftype β).cardinality)
:
((Finite.ftype β).cardinality - (Finite.ftype α).cardinality).factorial * (Finite.ftype (Function.Injection α β)).cardinality = (Finite.ftype β).cardinality.factorial
theorem
Combinatorics.Injective.cardinality_inj_div
{α β : Type u}
[Finite α]
[Finite β]
(h : (Finite.ftype α).cardinality ≤ (Finite.ftype β).cardinality)
:
(Finite.ftype (Function.Injection α β)).cardinality = (Finite.ftype β).cardinality.factorial / ((Finite.ftype β).cardinality - (Finite.ftype α).cardinality).factorial
theorem
Combinatorics.Injective.cardinality_inj_self
{α : Type u}
[Finite α]
:
(Finite.ftype (Function.Injection α α)).cardinality = (Finite.ftype α).cardinality.factorial
theorem
Combinatorics.Bijective.cardinality_bij_self
{α : Type u}
[Finite α]
:
(Finite.ftype (Function.Bijection α α)).cardinality = (Finite.ftype α).cardinality.factorial
theorem
Combinatorics.Surjective.cardinality_surj_self
{α : Type u}
[Finite α]
:
(Finite.ftype (Function.Surjection α α)).cardinality = (Finite.ftype α).cardinality.factorial
theorem
Combinatorics.Bijective.cardinality_bij
{α β : Type u}
[Finite α]
[Finite β]
(h : Equipotent α β)
:
(Finite.ftype (Function.Bijection α β)).cardinality = (Finite.ftype α).cardinality.factorial