Documentation

BourbakiLean2.Combinatorics.FunctionProps

theorem Combinatorics.Injective.cardinality_inj' {m n : Nat} {β : Type u} [Finite β] (h2 : (Finite.ftype β).cardinality = n) {α : Type u} [Finite α] :
(Finite.ftype α).cardinality = mm n(n - m).factorial * (Finite.ftype (Function.Injection α β)).cardinality = n.factorial
theorem Combinatorics.Injective.cardinality_inj {α β : Type u} [Finite α] [Finite β] (h : (Finite.ftype α).cardinality (Finite.ftype β).cardinality) :
((Finite.ftype β).cardinality - (Finite.ftype α).cardinality).factorial * (Finite.ftype (Function.Injection α β)).cardinality = (Finite.ftype β).cardinality.factorial
theorem Combinatorics.Injective.cardinality_inj_div {α β : Type u} [Finite α] [Finite β] (h : (Finite.ftype α).cardinality (Finite.ftype β).cardinality) :
(Finite.ftype (Function.Injection α β)).cardinality = (Finite.ftype β).cardinality.factorial / ((Finite.ftype β).cardinality - (Finite.ftype α).cardinality).factorial
theorem Combinatorics.Injective.cardinality_inj_self {α : Type u} [Finite α] :
(Finite.ftype (Function.Injection α α)).cardinality = (Finite.ftype α).cardinality.factorial
theorem Combinatorics.Bijective.cardinality_bij_self {α : Type u} [Finite α] :
(Finite.ftype (Function.Bijection α α)).cardinality = (Finite.ftype α).cardinality.factorial
theorem Combinatorics.Surjective.cardinality_surj_self {α : Type u} [Finite α] :
(Finite.ftype (Function.Surjection α α)).cardinality = (Finite.ftype α).cardinality.factorial
theorem Combinatorics.Bijective.cardinality_bij {α β : Type u} [Finite α] [Finite β] (h : Equipotent α β) :
(Finite.ftype (Function.Bijection α β)).cardinality = (Finite.ftype α).cardinality.factorial