Documentation
BourbakiLean2
.
Combinatorics
.
Defs
Search
Google site search
return to top
source
Imports
Init
BourbakiLean2.Data.Nat.Intervals
BourbakiLean2.Data.Nat.SequenceOps
Imported by
Nat
.
factorial
Nat
.
factorial_zero
Nat
.
factorial_succ
Nat
.
factorial_pos
Nat
.
factorial_monotone
Nat
.
factorial_lt_succ
Nat
.
factorial_strictMono
Nat
.
binom
Nat
.
binom_zero_of_gt
Nat
.
binom_of_le
source
noncomputable def
Nat
.
factorial
(n :
Nat
)
:
Nat
Equations
n
.factorial
=
Nat.prod_ft
0
n
fun (
i
:
Nat
) =>
i
+
1
Instances For
source
@[simp]
theorem
Nat
.
factorial_zero
:
Nat.factorial
0
=
1
source
@[simp]
theorem
Nat
.
factorial_succ
{n :
Nat
}
:
(
n
+
1
)
.factorial
=
n
.factorial
*
(
n
+
1
)
source
@[simp]
theorem
Nat
.
factorial_pos
{n :
Nat
}
:
0
<
n
.factorial
source
theorem
Nat
.
factorial_monotone
:
Monotone
Nat.factorial
source
theorem
Nat
.
factorial_lt_succ
{n :
Nat
}
:
(
n
+
1
)
.factorial
<
(
n
+
1
+
1
)
.factorial
source
theorem
Nat
.
factorial_strictMono
:
StrictMonotone
fun (
n
:
Nat
) =>
(
n
+
1
)
.factorial
source
noncomputable def
Nat
.
binom
(n k :
Nat
)
:
Nat
Equations
n
.binom
k
=
if
k
≤
n
then
n
.factorial
/
(
k
.factorial
*
(
n
-
k
)
.factorial
)
else
0
Instances For
source
@[simp]
theorem
Nat
.
binom_zero_of_gt
{n k :
Nat
}
:
n
<
k
→
n
.binom
k
=
0
source
@[simp]
theorem
Nat
.
binom_of_le
{n k :
Nat
}
:
k
≤
n
→
n
.binom
k
=
n
.factorial
/
(
k
.factorial
*
(
n
-
k
)
.factorial
)