@[simp]
@[simp]
theorem
Nat.unshift_shift_val
{a b c : Nat}
{d : ↥(Set.Icc (a + c) (b + c))}
:
Nat.shift c (Nat.unshift c d) = d
@[simp]
@[simp]
theorem
Nat.Icc_cardinality
{a b : Nat}
(h : a ≤ b)
:
(Finite.ftype ↥(Set.Icc a b)).cardinality = b - a + 1
@[simp]
@[simp]
@[simp]
theorem
Finite.equipotent_Iio
{α : Type u_1}
[Finite α]
:
Equipotent α ↥(Set.Iio (Finite.ftype α).cardinality)
theorem
TotalOrder.exists_iso_interval
{α : Type u_1}
[TotalOrder α]
[Finite α]
:
∃ (f : α → ↥(Set.Iio (Finite.ftype α).cardinality)), IsOrderIso f
theorem
TotalOrder.ex_unique_iso_interval
{α : Type u_1}
[TotalOrder α]
[Finite α]
:
∃! f : α → ↥(Set.Iio (Finite.ftype α).cardinality), IsOrderIso f
noncomputable def
TotalOrder.enumerate
{α : Type u_1}
[TotalOrder α]
[Finite α]
:
α → ↥(Set.Iio (Finite.ftype α).cardinality)
Equations
- TotalOrder.enumerate = ⋯.choose
Instances For
@[simp]
theorem
TotalOrder.enumerate_isOrderIso
{α : Type u_1}
[TotalOrder α]
[Finite α]
:
IsOrderIso TotalOrder.enumerate
noncomputable def
TotalOrder.nth
{α : Type u_1}
[TotalOrder α]
[Finite α]
:
↥(Set.Iio (Finite.ftype α).cardinality) → α
Equations
- TotalOrder.nth = ⋯.inv
Instances For
noncomputable def
TotalOrder.nth_isOrderIso
{α : Type u_1}
[TotalOrder α]
[Finite α]
:
IsOrderIso TotalOrder.nth
Equations
- ⋯ = ⋯
Instances For
@[simp]
theorem
TotalOrder.enumerate_nth
{α : Type u_1}
[TotalOrder α]
[Finite α]
{a : ↥(Set.Iio (Finite.ftype α).cardinality)}
:
@[simp]
@[simp]
theorem
TotalOrder.nth_le_iff
{α : Type u_1}
[TotalOrder α]
[Finite α]
{x y : ↥(Set.Iio (Finite.ftype α).cardinality)}
:
TotalOrder.nth x ≤ TotalOrder.nth y ↔ x ≤ y
@[simp]
theorem
TotalOrder.nth_lt_iff
{α : Type u_1}
[TotalOrder α]
[Finite α]
{x y : ↥(Set.Iio (Finite.ftype α).cardinality)}
:
TotalOrder.nth x < TotalOrder.nth y ↔ x < y
@[simp]
theorem
TotalOrder.enumerate_le_iff
{α : Type u_1}
[TotalOrder α]
[Finite α]
{x y : α}
:
TotalOrder.enumerate x ≤ TotalOrder.enumerate y ↔ x ≤ y
@[simp]
theorem
TotalOrder.enumerate_lt_iff
{α : Type u_1}
[TotalOrder α]
[Finite α]
{x y : α}
:
TotalOrder.enumerate x < TotalOrder.enumerate y ↔ x < y
@[simp]
theorem
TotalOrder.nth_zero
{α : Type u_1}
[TotalOrder α]
[Finite α]
[Nonempty α]
:
TotalOrder.nth ⟨0, ⋯⟩ = ⊥
@[simp]
theorem
TotalOrder.enumerate_least
{α : Type u_1}
[TotalOrder α]
[Finite α]
[Nonempty α]
:
TotalOrder.enumerate ⊥ = ⟨0, ⋯⟩