Documentation

BourbakiLean2.Order.TotalOrder

class TotalOrder (α : Type u_3) extends PartialOrder α :
Type u_3
Instances
    class IsTotalOrder {α : Type u_1} (r : Relation α α) extends IsPartialOrder r :
    Instances
      instance instTotalOrderRelAsLEOfIsTotalOrder {α : Type u_1} {r : Relation α α} [inst : IsTotalOrder r] :
      Equations
      theorem TotalOrder.isTotalOrder {α : Type u_1} [TotalOrder α] :
      IsTotalOrder {p : α × α | p.fst p.snd}
      theorem le_total {α : Type u_1} [TotalOrder α] (x y : α) :
      x y y x
      theorem lt_trichotomy {α : Type u_1} [TotalOrder α] (x y : α) :
      x < y x = y y < x
      theorem not_ge_iff_lt {α : Type u_1} {x y : α} [TotalOrder α] :
      ¬y x x < y
      theorem not_gt_iff_le {α : Type u_1} {x y : α} [TotalOrder α] :
      ¬y < x x y
      theorem le_of_not_ge {α : Type u_1} {x y : α} [TotalOrder α] (h : ¬y x) :
      x y
      noncomputable instance instMaxOfTotalOrder {α : Type u_1} [TotalOrder α] :
      Max α
      Equations
      • instMaxOfTotalOrder = { max := fun (x y : α) => if x y then y else x }
      @[simp]
      theorem max_eq_left_iff {α : Type u_1} {x y : α} [TotalOrder α] :
      x y = y x y
      @[simp]
      theorem max_eq_right_iff {α : Type u_1} {x y : α} [TotalOrder α] :
      x y = x y x
      theorem max_eq_either {α : Type u_1} [TotalOrder α] (x y : α) :
      x y = x x y = y
      noncomputable instance instMinOfTotalOrder {α : Type u_1} [TotalOrder α] :
      Min α
      Equations
      • instMinOfTotalOrder = { min := fun (x y : α) => if x y then x else y }
      @[simp]
      theorem min_eq_left_iff {α : Type u_1} {x y : α} [TotalOrder α] :
      x y = y y x
      @[simp]
      theorem min_eq_right_iff {α : Type u_1} {x y : α} [TotalOrder α] :
      x y = x x y
      theorem min_eq_either {α : Type u_1} [TotalOrder α] (x y : α) :
      x y = x x y = y
      noncomputable instance instLatticeOfTotalOrder {α : Type u_1} [TotalOrder α] :
      Equations
      instance instTotalOrderSubtype {α : Type u_1} [TotalOrder α] {p : αProp} :
      TotalOrder { x : α // p x }
      Equations
      Equations
      instance instTotalOrderOp {α : Type u_1} [TotalOrder α] :
      Equations
      def TotalOrder.of_surjective_monotone {α : Type u_1} {β : Type u_2} [TotalOrder α] [PartialOrder β] {f : αβ} (h : Monotone f) (h' : Function.Surjective f) :
      Equations
      Instances For
        theorem TotalOrder.inj_of_strictMono {α : Type u_1} {β : Type u_2} [TotalOrder α] [Preorder β] {f : αβ} (h : StrictMonotone f) :
        theorem TotalOrder.inj_of_strictAnti {α : Type u_1} {β : Type u_2} [TotalOrder α] [Preorder β] {f : αβ} (h : StrictAntitone f) :
        theorem TotalOrder.strictMono_reflect {α : Type u_1} {β : Type u_2} {x y : α} [TotalOrder α] [PartialOrder β] {f : αβ} (h : StrictMonotone f) :
        f x f yx y
        theorem TotalOrder.mono_lt_reflect {α : Type u_1} {β : Type u_2} {x y : α} [TotalOrder α] [PartialOrder β] {f : αβ} (h : Monotone f) :
        f x < f yx < y
        theorem TotalOrder.strictMono_le_iff {α : Type u_1} {β : Type u_2} {x y : α} [TotalOrder α] [PartialOrder β] {f : αβ} (h : StrictMonotone f) :
        f x f y x y
        theorem TotalOrder.strictMono_iso_image {α : Type u_1} {β : Type u_2} [TotalOrder α] [PartialOrder β] {f : αβ} (h : StrictMonotone f) (h' : Function.Surjective f) :
        theorem TotalOrder.corestrict_strictMono_iso {α : Type u_1} {β : Type u_2} [TotalOrder α] [PartialOrder β] {f : αβ} (h : StrictMonotone f) :
        theorem TotalOrder.corestrict_strictMono_iso' {α : Type u_1} {β : Type u_2} [TotalOrder α] [PartialOrder β] {f : αβ} {s : Set β} (h : StrictMonotone f) (h' : f '' Set.univ = s) :
        theorem isLUB_iff_ub_exists_lt {α : Type u_1} {x : α} [TotalOrder α] {s : Set α} :
        IsLUB s x UpperBound s x ∀ (y : α), y < x∃ (z : α), z s y < z
        theorem isGLB_iff_lb_exists_gt {α : Type u_1} {x : α} [TotalOrder α] {s : Set α} :
        IsGLB s x LowerBound s x ∀ (y : α), x < y∃ (z : α), z s z < y
        Equations
        def TotalOrder.carry_bij {α : Type u_1} [TotalOrder α] {β : Type u_3} (f : Function.Bijection α β) :
        Equations
        Instances For
          def IsOrderIso.totalOrder {α : Type u_1} {β : Type u_3} [TotalOrder α] [Preorder β] {f : αβ} (h : IsOrderIso f) :
          Equations
          Instances For