- le_antisymm : ∀ (a b : α), a ≤ b → b ≤ a → a = b
- le_total : ∀ (x y : α), Comparable x y
Instances
instance
instTotalOrderRelAsLEOfIsTotalOrder
{α : Type u_1}
{r : Relation α α}
[inst : IsTotalOrder r]
:
TotalOrder (RelAsLE r)
Equations
- instTotalOrderRelAsLEOfIsTotalOrder = TotalOrder.mk ⋯
theorem
TotalOrder.isTotalOrder
{α : Type u_1}
[TotalOrder α]
:
IsTotalOrder {p : α × α | p.fst ≤ p.snd}
Equations
- instLatticeOfTotalOrder = Lattice.mk max ⋯ ⋯ ⋯
instance
instTotalOrderSubtype
{α : Type u_1}
[TotalOrder α]
{p : α → Prop}
:
TotalOrder { x : α // p x }
Equations
- instTotalOrderSubtype = TotalOrder.mk ⋯
Equations
- instTotalOrderOfSubsingleton = TotalOrder.mk ⋯
Equations
- instTotalOrderOp = TotalOrder.mk ⋯
def
TotalOrder.of_surjective_monotone
{α : Type u_1}
{β : Type u_2}
[TotalOrder α]
[PartialOrder β]
{f : α → β}
(h : Monotone f)
(h' : Function.Surjective f)
:
Equations
Instances For
theorem
TotalOrder.inj_of_strictMono
{α : Type u_1}
{β : Type u_2}
[TotalOrder α]
[Preorder β]
{f : α → β}
(h : StrictMonotone f)
:
theorem
TotalOrder.inj_of_strictAnti
{α : Type u_1}
{β : Type u_2}
[TotalOrder α]
[Preorder β]
{f : α → β}
(h : StrictAntitone f)
:
theorem
TotalOrder.strictMono_reflect
{α : Type u_1}
{β : Type u_2}
{x y : α}
[TotalOrder α]
[PartialOrder β]
{f : α → β}
(h : StrictMonotone f)
:
theorem
TotalOrder.mono_lt_reflect
{α : Type u_1}
{β : Type u_2}
{x y : α}
[TotalOrder α]
[PartialOrder β]
{f : α → β}
(h : Monotone f)
:
theorem
TotalOrder.strictMono_le_iff
{α : Type u_1}
{β : Type u_2}
{x y : α}
[TotalOrder α]
[PartialOrder β]
{f : α → β}
(h : StrictMonotone f)
:
theorem
TotalOrder.strictMono_iso_image
{α : Type u_1}
{β : Type u_2}
[TotalOrder α]
[PartialOrder β]
{f : α → β}
(h : StrictMonotone f)
(h' : Function.Surjective f)
:
theorem
TotalOrder.corestrict_strictMono_iso
{α : Type u_1}
{β : Type u_2}
[TotalOrder α]
[PartialOrder β]
{f : α → β}
(h : StrictMonotone f)
:
theorem
TotalOrder.corestrict_strictMono_iso'
{α : Type u_1}
{β : Type u_2}
[TotalOrder α]
[PartialOrder β]
{f : α → β}
{s : Set β}
(h : StrictMonotone f)
(h' : f '' Set.univ = s)
:
Equations
- instTotalOrderAdjoinGreatest = TotalOrder.mk ⋯
def
TotalOrder.carry_bij
{α : Type u_1}
[TotalOrder α]
{β : Type u_3}
(f : Function.Bijection α β)
:
Equations
Instances For
def
IsOrderIso.totalOrder
{α : Type u_1}
{β : Type u_3}
[TotalOrder α]
[Preorder β]
{f : α → β}
(h : IsOrderIso f)
:
Equations
- h.totalOrder = TotalOrder.mk ⋯