Equations
- UpperBound s a = ∀ (b : α), b ∈ s → b ≤ a
Instances For
Equations
- LowerBound s a = ∀ (b : α), b ∈ s → a ≤ b
Instances For
Equations
- s.BoundedAbove = ∃ (a : α), UpperBound s a
Instances For
Equations
- s.BoundedBelow = ∃ (a : α), LowerBound s a
Instances For
theorem
upperBound_iff_greatest_of_mem
{α : Type u_1}
[Preorder α]
{s : Set α}
{a : α}
(h : a ∈ s)
:
Greatest ⟨a, h⟩ ↔ UpperBound s a
theorem
lowerBound_iff_least_of_mem
{α : Type u_1}
[Preorder α]
{s : Set α}
{a : α}
(h : a ∈ s)
:
Least ⟨a, h⟩ ↔ LowerBound s a
theorem
UpperBound.subset
{α : Type u_1}
[Preorder α]
{s t : Set α}
{a : α}
(h : UpperBound s a)
(h' : t ⊆ s)
:
UpperBound t a
theorem
LowerBound.subset
{α : Type u_1}
[Preorder α]
{s t : Set α}
{a : α}
(h : LowerBound s a)
(h' : t ⊆ s)
:
LowerBound t a
theorem
UpperBound.upperBound_of_le
{α : Type u_1}
[Preorder α]
{s : Set α}
{a b : α}
(h : UpperBound s a)
(h' : a ≤ b)
:
UpperBound s b
theorem
LowerBound.lowerBound_of_le
{α : Type u_1}
[Preorder α]
{s : Set α}
{a b : α}
(h : LowerBound s a)
(h' : b ≤ a)
:
LowerBound s b
theorem
upperBound_iUnion_iff
{α : Type u_1}
[Preorder α]
{a : α}
{ι : Type u_3}
{s : ι → Set α}
:
UpperBound (⋃ i : ι, s i) a ↔ ∀ (i : ι), UpperBound (s i) a
theorem
UpperBound.upperBound_iInter
{α : Type u_1}
[Preorder α]
{a : α}
{ι : Type u_3}
{s : ι → Set α}
{i : ι}
(h : UpperBound (s i) a)
:
UpperBound (⋂ i : ι, s i) a
theorem
lowerbound_iUnion_iff
{α : Type u_1}
[Preorder α]
{a : α}
{ι : Type u_3}
{s : ι → Set α}
:
LowerBound (⋃ i : ι, s i) a ↔ ∀ (i : ι), LowerBound (s i) a
theorem
LowerBound.lowerBound_iInter
{α : Type u_1}
[Preorder α]
{a : α}
{ι : Type u_3}
{s : ι → Set α}
{i : ι}
(h : LowerBound (s i) a)
:
LowerBound (⋂ i : ι, s i) a
@[simp]
@[simp]
theorem
Monotone.upperBound_of_upperBound
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[Preorder β]
{s : Set α}
{a : α}
{f : α → β}
(h : Monotone f)
(h' : UpperBound s a)
:
UpperBound (f '' s) (f a)
theorem
Monotone.lowerBound_of_lowerBound
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[Preorder β]
{s : Set α}
{a : α}
{f : α → β}
(h : Monotone f)
(h' : LowerBound s a)
:
LowerBound (f '' s) (f a)
@[simp]
theorem
HasGreatest.upperBound
{α : Type u_1}
[Preorder α]
[HasGreatest α]
{s : Set α}
:
UpperBound s ⊤
@[simp]