Documentation

BourbakiLean2.Order.Bounds

def UpperBound {α : Type u_1} [Preorder α] (s : Set α) (a : α) :
Equations
Instances For
    def LowerBound {α : Type u_1} [Preorder α] (s : Set α) (a : α) :
    Equations
    Instances For
      def Set.BoundedAbove {α : Type u_1} [Preorder α] (s : Set α) :
      Equations
      Instances For
        def Set.BoundedBelow {α : Type u_1} [Preorder α] (s : Set α) :
        Equations
        Instances For
          def Set.Bounded {α : Type u_1} [Preorder α] (s : Set α) :
          Equations
          • s.Bounded = (s.BoundedAbove s.BoundedBelow)
          Instances For
            theorem upperBound_iff_greatest_of_mem {α : Type u_1} [Preorder α] {s : Set α} {a : α} (h : a s) :
            Greatest a, h UpperBound s a
            theorem lowerBound_iff_least_of_mem {α : Type u_1} [Preorder α] {s : Set α} {a : α} (h : a s) :
            Least a, h LowerBound s a
            theorem UpperBound.subset {α : Type u_1} [Preorder α] {s t : Set α} {a : α} (h : UpperBound s a) (h' : t s) :
            theorem LowerBound.subset {α : Type u_1} [Preorder α] {s t : Set α} {a : α} (h : LowerBound s a) (h' : t s) :
            theorem Set.BoundedAbove.subset {α : Type u_1} [Preorder α] {s t : Set α} (h : s.BoundedAbove) (h' : t s) :
            t.BoundedAbove
            theorem Set.BoundedBelow.subset {α : Type u_1} [Preorder α] {s t : Set α} (h : s.BoundedBelow) (h' : t s) :
            t.BoundedBelow
            theorem Set.Bounded.subset {α : Type u_1} [Preorder α] {s t : Set α} (h : s.Bounded) (h' : t s) :
            t.Bounded
            theorem UpperBound.upperBound_of_le {α : Type u_1} [Preorder α] {s : Set α} {a b : α} (h : UpperBound s a) (h' : a b) :
            theorem LowerBound.lowerBound_of_le {α : Type u_1} [Preorder α] {s : Set α} {a b : α} (h : LowerBound s a) (h' : b a) :
            theorem upperBound_iUnion_iff {α : Type u_1} [Preorder α] {a : α} {ι : Type u_3} {s : ιSet α} :
            UpperBound (⋃ i : ι, s i) a ∀ (i : ι), UpperBound (s i) a
            theorem UpperBound.upperBound_iInter {α : Type u_1} [Preorder α] {a : α} {ι : Type u_3} {s : ιSet α} {i : ι} (h : UpperBound (s i) a) :
            UpperBound (⋂ i : ι, s i) a
            theorem lowerbound_iUnion_iff {α : Type u_1} [Preorder α] {a : α} {ι : Type u_3} {s : ιSet α} :
            LowerBound (⋃ i : ι, s i) a ∀ (i : ι), LowerBound (s i) a
            theorem LowerBound.lowerBound_iInter {α : Type u_1} [Preorder α] {a : α} {ι : Type u_3} {s : ιSet α} {i : ι} (h : LowerBound (s i) a) :
            LowerBound (⋂ i : ι, s i) a
            @[simp]
            theorem UpperBound.empty {α : Type u_1} [Preorder α] {a : α} :
            @[simp]
            theorem LowerBound.empty {α : Type u_1} [Preorder α] {a : α} :
            @[simp]
            theorem UpperBound.singleton {α : Type u_1} [Preorder α] {a b : α} :
            UpperBound {a} b a b
            @[simp]
            theorem LowerBound.singleton {α : Type u_1} [Preorder α] {a b : α} :
            LowerBound {a} b b a
            theorem Monotone.upperBound_of_upperBound {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {s : Set α} {a : α} {f : αβ} (h : Monotone f) (h' : UpperBound s a) :
            UpperBound (f '' s) (f a)
            theorem Monotone.lowerBound_of_lowerBound {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {s : Set α} {a : α} {f : αβ} (h : Monotone f) (h' : LowerBound s a) :
            LowerBound (f '' s) (f a)
            @[simp]
            theorem HasGreatest.upperBound {α : Type u_1} [Preorder α] [HasGreatest α] {s : Set α} :
            @[simp]
            theorem HasLeast.lowerBound {α : Type u_1} [Preorder α] [HasLeast α] {s : Set α} :