Documentation

BourbakiLean2.Order.Monotone

def Monotone {α : Type u_1} {β : Type u_2} (f : αβ) [LE α] [LE β] :
Equations
Instances For
    def Antitone {α : Type u_1} {β : Type u_2} (f : αβ) [LE α] [LE β] :
    Equations
    Instances For
      def StrictMonotone {α : Type u_1} {β : Type u_2} (f : αβ) [LT α] [LT β] :
      Equations
      Instances For
        def StrictAntitone {α : Type u_1} {β : Type u_2} (f : αβ) [LT α] [LT β] :
        Equations
        Instances For
          structure IsOrderIso {α : Type u_1} {β : Type u_2} (f : αβ) [LE α] [LE β] :
          Instances For
            @[simp]
            theorem id_mono {α : Type u_1} [LE α] :
            theorem Monotone.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : βγ} {g : αβ} [LE α] [LE β] [LE γ] (h : Monotone f) (h' : Monotone g) :
            theorem Monotone.comp_anti {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : βγ} {g : αβ} [LE α] [LE β] [LE γ] (h : Monotone f) (h' : Antitone g) :
            theorem Monotone.restrict {β : Type u_2} {γ : Type u_3} {f : βγ} [LE β] [LE γ] {x : Set β} (h : Monotone f) :
            theorem Antitone.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : βγ} {g : αβ} [LE α] [LE β] [LE γ] (h : Antitone f) (h' : Antitone g) :
            theorem Antitone.comp_mono {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : βγ} {g : αβ} [LE α] [LE β] [LE γ] (h : Antitone f) (h' : Monotone g) :
            theorem Antitone.restrict {β : Type u_2} {γ : Type u_3} {f : βγ} [LE β] [LE γ] {x : Set β} (h : Antitone f) :
            theorem isOrderIso_iff_reflect {β : Type u_2} {γ : Type u_3} {f : βγ} [LE β] [LE γ] :
            IsOrderIso f Function.Bijective f Monotone f ∀ (x y : β), f x f yx y
            theorem IsOrderIso.le_iff {β : Type u_2} {γ : Type u_3} {f : βγ} [LE β] [LE γ] (h : IsOrderIso f) {a b : β} :
            f a f b a b
            theorem IsOrderIso.inv {β : Type u_2} {γ : Type u_3} {f : βγ} [LE β] [LE γ] (h : IsOrderIso f) :
            IsOrderIso .inv
            theorem IsOrderIso.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : βγ} {g : αβ} [LE α] [LE β] [LE γ] (h : IsOrderIso f) (h' : IsOrderIso g) :
            theorem id_isOrderIso {α : Type u_1} [LE α] :
            @[simp]
            theorem id_strict_mono {α : Type u_1} [LT α] :
            theorem StrictMonotone.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : βγ} {g : αβ} [LT α] [LT β] [LT γ] (h : StrictMonotone f) (h' : StrictMonotone g) :
            theorem StrictMonotone.comp_strictAnti {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : βγ} {g : αβ} [LT α] [LT β] [LT γ] (h : StrictMonotone f) (h' : StrictAntitone g) :
            theorem StrictAntitone.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : βγ} {g : αβ} [LT α] [LT β] [LT γ] (h : StrictAntitone f) (h' : StrictAntitone g) :
            theorem StrictAntitone.comp_mono {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : βγ} {g : αβ} [LT α] [LT β] [LT γ] (h : StrictAntitone f) (h' : StrictMonotone g) :
            theorem StrictMonotone.restrict {β : Type u_2} {γ : Type u_3} {f : βγ} [LT β] [LT γ] {x : Set β} (h : StrictMonotone f) :
            theorem StrictAntitone.restrict {β : Type u_2} {γ : Type u_3} {f : βγ} [LT β] [LT γ] {x : Set β} (h : StrictAntitone f) :
            @[simp]
            theorem const_mono {α : Type u_1} {β : Type u_2} [LE α] [Preorder β] {b : β} :
            @[simp]
            theorem const_anti {α : Type u_1} {β : Type u_2} [LE α] [Preorder β] {b : β} :
            theorem StrictMonotone.monotone {α : Type u_1} {β : Type u_2} [PartialOrder α] [PartialOrder β] {f : αβ} (h : StrictMonotone f) :
            theorem Monotone.strictMono_of_inj {α : Type u_1} {β : Type u_2} [PartialOrder α] [PartialOrder β] {f : αβ} (h : Monotone f) (h' : Function.Injective f) :
            theorem Antitone.strictAnti_of_inj {α : Type u_1} {β : Type u_2} [PartialOrder α] [PartialOrder β] {f : αβ} (h : Antitone f) (h' : Function.Injective f) :
            @[simp]
            theorem toOp_antitone {α : Type u_1} [LE α] :
            @[simp]
            theorem toOp_strictAnti {α : Type u_1} [LT α] :
            @[simp]
            theorem fromOp_antitone {α : Type u_1} [LE α] :
            Antitone fromOp
            @[simp]
            theorem fromOp_strictAnti {α : Type u_1} [LT α] :
            theorem monotone_iff_toOp_antitone {α : Type u_1} {β : Type u_2} {f : αβ} [LE α] [LE β] :
            theorem monotone_iff_fromOp_antitone {α : Type u_1} {β : Type u_2} {f : αβ} [LE α] [LE β] :
            Monotone f Antitone (f fromOp)
            theorem antitone_iff_toOp_monotone {α : Type u_1} {β : Type u_2} {f : αβ} [LE α] [LE β] :
            theorem antitone_iff_fromOp_monotone {α : Type u_1} {β : Type u_2} {f : αβ} [LE α] [LE β] :
            Antitone f Monotone (f fromOp)
            theorem strictMono_iff_toOp_strictAnti {α : Type u_1} {β : Type u_2} {f : αβ} [LT α] [LT β] :
            theorem strictMono_iff_fromOp_strictAnti {α : Type u_1} {β : Type u_2} {f : αβ} [LT α] [LT β] :
            theorem strictAnti_iff_toOp_strictMono {α : Type u_1} {β : Type u_2} {f : αβ} [LT α] [LT β] :
            theorem strictAnti_iff_fromOp_strictMono {α : Type u_1} {β : Type u_2} {f : αβ} [LT α] [LT β] :
            @[simp]
            theorem Set.compl_strictAnti {α : Type u_1} :
            StrictAntitone Set.compl
            theorem pseudoinv_of_antitone {α : Type u_1} {β : Type u_2} [Preorder α] [PartialOrder β] {f : αβ} {g : βα} (hf : Antitone f) (h : ∀ (x : α), g (f x) x) (h' : ∀ (y : β), f (g y) y) :
            f g f = f
            theorem Subtype.val_monotone {α : Type u_1} {p : αProp} [LE α] :
            Monotone Subtype.val
            theorem Subtype.val_strictMonotone {α : Type u_1} {p : αProp} [LT α] :
            StrictMonotone Subtype.val
            theorem PartialMap.carrier_monotone {α : Type u_1} {β : αType u_3} :
            Monotone PartialMap.carrier
            theorem IsOrderIso.lt_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : αβ} (h : IsOrderIso f) {a b : α} :
            f a < f b a < b
            theorem IsOrderIso.strictMonotone {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : αβ} (h : IsOrderIso f) :