- bij : Function.Bijective f
- monotone : Monotone f
- monotone_inv : Monotone ⋯.inv
Instances For
theorem
isOrderIso_iff_reflect
{β : Type u_2}
{γ : Type u_3}
{f : β → γ}
[LE β]
[LE γ]
:
IsOrderIso f ↔ Function.Bijective f ∧ Monotone f ∧ ∀ (x y : β), f x ≤ f y → x ≤ y
theorem
IsOrderIso.le_iff
{β : Type u_2}
{γ : Type u_3}
{f : β → γ}
[LE β]
[LE γ]
(h : IsOrderIso f)
{a b : β}
:
theorem
IsOrderIso.inv
{β : Type u_2}
{γ : Type u_3}
{f : β → γ}
[LE β]
[LE γ]
(h : IsOrderIso f)
:
IsOrderIso ⋯.inv
theorem
IsOrderIso.comp
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{f : β → γ}
{g : α → β}
[LE α]
[LE β]
[LE γ]
(h : IsOrderIso f)
(h' : IsOrderIso g)
:
IsOrderIso (f ∘ g)
theorem
StrictMonotone.comp
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{f : β → γ}
{g : α → β}
[LT α]
[LT β]
[LT γ]
(h : StrictMonotone f)
(h' : StrictMonotone g)
:
StrictMonotone (f ∘ g)
theorem
StrictMonotone.comp_strictAnti
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{f : β → γ}
{g : α → β}
[LT α]
[LT β]
[LT γ]
(h : StrictMonotone f)
(h' : StrictAntitone g)
:
StrictAntitone (f ∘ g)
theorem
StrictAntitone.comp
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{f : β → γ}
{g : α → β}
[LT α]
[LT β]
[LT γ]
(h : StrictAntitone f)
(h' : StrictAntitone g)
:
StrictMonotone (f ∘ g)
theorem
StrictAntitone.comp_mono
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{f : β → γ}
{g : α → β}
[LT α]
[LT β]
[LT γ]
(h : StrictAntitone f)
(h' : StrictMonotone g)
:
StrictAntitone (f ∘ g)
theorem
StrictMonotone.restrict
{β : Type u_2}
{γ : Type u_3}
{f : β → γ}
[LT β]
[LT γ]
{x : Set β}
(h : StrictMonotone f)
:
StrictMonotone (f|_x)
theorem
StrictAntitone.restrict
{β : Type u_2}
{γ : Type u_3}
{f : β → γ}
[LT β]
[LT γ]
{x : Set β}
(h : StrictAntitone f)
:
StrictAntitone (f|_x)
@[simp]
theorem
const_mono
{α : Type u_1}
{β : Type u_2}
[LE α]
[Preorder β]
{b : β}
:
Monotone (Function.const α b)
@[simp]
theorem
const_anti
{α : Type u_1}
{β : Type u_2}
[LE α]
[Preorder β]
{b : β}
:
Antitone (Function.const α b)
theorem
StrictMonotone.monotone
{α : Type u_1}
{β : Type u_2}
[PartialOrder α]
[PartialOrder β]
{f : α → β}
(h : StrictMonotone f)
:
Monotone f
theorem
Monotone.strictMono_of_inj
{α : Type u_1}
{β : Type u_2}
[PartialOrder α]
[PartialOrder β]
{f : α → β}
(h : Monotone f)
(h' : Function.Injective f)
:
theorem
Antitone.strictAnti_of_inj
{α : Type u_1}
{β : Type u_2}
[PartialOrder α]
[PartialOrder β]
{f : α → β}
(h : Antitone f)
(h' : Function.Injective f)
:
theorem
strictMono_iff_toOp_strictAnti
{α : Type u_1}
{β : Type u_2}
{f : α → β}
[LT α]
[LT β]
:
StrictMonotone f ↔ StrictAntitone (toOp ∘ f)
theorem
strictMono_iff_fromOp_strictAnti
{α : Type u_1}
{β : Type u_2}
{f : α → β}
[LT α]
[LT β]
:
StrictMonotone f ↔ StrictAntitone (f ∘ fromOp)
theorem
strictAnti_iff_toOp_strictMono
{α : Type u_1}
{β : Type u_2}
{f : α → β}
[LT α]
[LT β]
:
StrictAntitone f ↔ StrictMonotone (toOp ∘ f)
theorem
strictAnti_iff_fromOp_strictMono
{α : Type u_1}
{β : Type u_2}
{f : α → β}
[LT α]
[LT β]
:
StrictAntitone f ↔ StrictMonotone (f ∘ fromOp)
theorem
IsOrderIso.lt_iff
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[Preorder β]
{f : α → β}
(h : IsOrderIso f)
{a b : α}
:
theorem
IsOrderIso.strictMonotone
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[Preorder β]
{f : α → β}
(h : IsOrderIso f)
: