theorem
PartialOrder.isPartialOrder
{α : Type u_1}
[PartialOrder α]
:
IsPartialOrder {p : α × α | p.fst ≤ p.snd}
Equations
- instPreorderRelAsLEOfIsPreorder = Preorder.mk ⋯ ⋯ ⋯
instance
instPartialOrderRelAsLEOfIsPartialOrder
{α : Type u_1}
{r : Relation α α}
[inst : IsPartialOrder r]
:
PartialOrder (RelAsLE r)
Equations
- instPartialOrderRelAsLEOfIsPartialOrder = PartialOrder.mk ⋯
Equations
- ⋯ = ⋯
Equations
- instPreorderSubtype = Preorder.mk ⋯ ⋯ ⋯
instance
instPartialOrderSubtype
{α : Type u_1}
[PartialOrder α]
{p : α → Prop}
:
PartialOrder { x : α // p x }
Equations
- instPartialOrderSubtype = PartialOrder.mk ⋯
Equations
- opPreorder = Preorder.mk ⋯ ⋯ ⋯
Equations
- Preorder.equivalent_rel (a, b) = (a ≤ b ∧ b ≤ a)
Instances For
Equations
- ⋯ = ⋯
@[simp]
@[simp]
Equations
- Preorder.QuotEquiv α = Quot (Function.curry Preorder.equivalent_rel)
Instances For
def
Preorder.QuotEquiv.from
{α : Type u}
[Preorder α]
(h : Preorder.QuotEquiv α)
:
Quot (Function.curry Preorder.equivalent_rel)
Equations
- h.from = h
Instances For
def
Preorder.QuotEquiv.to
{α : Type u}
[Preorder α]
(h : Quot (Function.curry Preorder.equivalent_rel))
:
Equations
Instances For
Equations
- Preorder.QuotEquiv.mk h = Quot.mk (Function.curry Preorder.equivalent_rel) h
Instances For
def
Preorder.carry_bij
{α : Type u_1}
[Preorder α]
{β : Type u_2}
(f : Function.Bijection α β)
:
Preorder β
Equations
- Preorder.carry_bij f = Preorder.mk ⋯ ⋯ ⋯
Instances For
theorem
isPreorder_of_graph_prop
{α : Type u_1}
{r : Relation α α}
(h : r.comp r = r)
(h' : Relation.diag ⊆ r)
:
theorem
lt_of_lt_lt
{α : Type u_1}
[inst : PartialOrder α]
{a b c : α}
(h : a < b)
(h' : b < c)
:
a < c
theorem
lt_of_le_lt
{α : Type u_1}
[inst : PartialOrder α]
{a b c : α}
(h : a ≤ b)
(h' : b < c)
:
a < c
theorem
lt_of_lt_le
{α : Type u_1}
[inst : PartialOrder α]
{a b c : α}
(h : a < b)
(h' : b ≤ c)
:
a < c
def
PartialOrder.carry_bij
{α : Type u_1}
[inst : PartialOrder α]
{β : Type u_2}
(f : Function.Bijection α β)
:
Equations
Instances For
@[simp]
theorem
PartialOrder.equivalent_rel_diag
{α : Type u_1}
[inst : PartialOrder α]
:
Preorder.equivalent_rel = Relation.diag
@[simp]
Equations
- opPartialOrder = PartialOrder.mk ⋯
Equations
- instPartialOrderWithEq = PartialOrder.mk ⋯
Equations
- instPartialOrderSet = PartialOrder.mk ⋯
instance
instPartialOrderPartialMap
{α : Type u_1}
{β : α → Type u_2}
:
PartialOrder (PartialMap α β)
Equations
- instPartialOrderPartialMap = PartialOrder.mk ⋯
Equations
- instPreorderCovering = Preorder.mk ⋯ ⋯ ⋯
Equations
- instPartialOrderPartition = PartialOrder.mk ⋯
Equations
- instPartialOrderQuotEquiv = PartialOrder.mk ⋯
Equations
- instPreorderPointwise = Preorder.mk ⋯ ⋯ ⋯
instance
instPartialOrderPointwise
{α : Type u_1}
{β : α → Type u_2}
[(x : α) → PartialOrder (β x)]
:
PartialOrder (Pointwise α β)
Equations
- instPartialOrderPointwise = PartialOrder.mk ⋯
@[simp]
theorem
Preorder.quotEquiv_le_iff
{α : Type u_1}
[Preorder α]
{a b : α}
:
Preorder.QuotEquiv.mk a ≤ Preorder.QuotEquiv.mk b ↔ a ≤ b
Equations
- instPreorderProd = Preorder.mk ⋯ ⋯ ⋯
instance
instPartialOrderProd
{α : Type u_1}
{β : Type u_2}
[PartialOrder α]
[PartialOrder β]
:
PartialOrder (α × β)
Equations
- instPartialOrderProd = PartialOrder.mk ⋯
Equations
- Comparable x y = (x ≤ y ∨ y ≤ x)
Instances For
theorem
incomparable_iff_not_comparable
{α : Type u_1}
[Preorder α]
{x y : α}
:
Incomparable x y ↔ ¬Comparable x y
theorem
not_incomparable_iff_comparable
{α : Type u_1}
[Preorder α]
{x y : α}
:
Comparable x y ↔ ¬Incomparable x y