Documentation

BourbakiLean2.Set.Prod

def iProd {ι : Type u_2} {x : ιType u_5} (y : (i : ι) → Set (x i)) :
Set ((i : ι) → x i)
Equations
  • iProd y = {f : (i : ι) → x i | ∀ (i : ι), f i y i}
Instances For
    @[simp]
    def mem_iProd_iff {ι : Type u_2} {x : ιType u_5} {y : (i : ι) → Set (x i)} {a : (i : ι) → x i} :
    a iProd y ∀ (i : ι), a i y i
    Equations
    • =
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem Set.Product.subset_iProd_image_proj {ι : Type u_2} {x : ιType u_5} {a : Set ((i : ι) → x i)} :
            a Πˢ i : ι, (fun (s : (i : ι) → x i) => s i) '' a
            def Set.Product.iProd_to_prod {ι : Type u_2} {x : ιType u_5} {y : (i : ι) → Set (x i)} (p : (iProd y)) (i : ι) :
            (y i)
            Equations
            Instances For
              def Set.Product.prod_to_iProd {ι : Type u_2} {x : ιType u_5} {y : (i : ι) → Set (x i)} (p : (i : ι) → (y i)) :
              (iProd y)
              Equations
              Instances For
                theorem Set.Product.prod_to_iProd_inverse {ι : Type u_2} {x : ιType u_5} {y : (i : ι) → Set (x i)} :
                Function.IsInverseOf Set.Product.iProd_to_prod Set.Product.prod_to_iProd
                @[simp]
                theorem Set.Product.iProd_univ {ι : Type u_7} {x : ιType u_9} :
                Πˢ i : ι, Set.univ = Set.univ
                theorem Set.Product.iProd_iUnion_distrib {ι : Type u_7} {ι' : ιType u_8} {x : ιType u_9} {y : (i : ι) → ι' iSet (x i)} :
                Πˢ i : ι, i' : ι' i, y i i' = i'' : (i : ι) → ι' i, Πˢ i : ι, y i (i'' i)
                theorem Set.Product.iProd_iInter_distrib {ι : Type u_7} {ι' : ιType u_8} {x : ιType u_9} {y : (i : ι) → ι' iSet (x i)} (ne : ∀ (i : ι), Nonempty (ι' i)) :
                Πˢ i : ι, i' : ι' i, y i i' = i'' : (i : ι) → ι' i, Πˢ i : ι, y i (i'' i)
                theorem Set.Product.iProd_iInter_two_distrib {ι : Type u_7} {ι' : Type u_10} {x : ιType u_11} {y : (i : ι) → ι'Set (x i)} :
                i' : ι', Πˢ i : ι, y i i' = Πˢ i : ι, i' : ι', y i i'
                theorem Set.Product.iProd_inter_distrib {ι : Type u_7} {x : ιType u_10} {y y' : (i : ι) → Set (x i)} :
                (Πˢ i : ι, y i) Πˢ i : ι, y' i = Πˢ i : ι, y i y' i
                theorem Set.Product.iInter_prod_distrib {ι : Type u_7} {α : Type u_10} {y y' : ιSet α} :
                (⋂ i : ι, y i).prod (⋂ i : ι, y' i) = i : ι, (y i).prod (y' i)
                theorem Set.Product.iProd_eq_iInter_preimage {ι : Type u_7} {x : ιType u_9} {y : (i : ι) → Set (x i)} :
                Πˢ i : ι, y i = i : ι, (fun (f : (i : ι) → x i) => f i) ⁻¹' y i
                theorem Set.Set.iProd_isCovering {ι : Type u_7} {ι' : ιType u_8} {x : ιType u_9} {y : (i : ι) → ι' iSet (x i)} (h : ∀ (i : ι), Set.IsCovering (y i)) :
                Set.IsCovering fun (i' : (i : ι) → ι' i) => Πˢ i : ι, y i (i' i)
                theorem Set.Set.iProd_disjoint {ι : Type u_7} {ι' : ιType u_8} {x : ιType u_9} {y : (i : ι) → ι' iSet (x i)} (h : ∀ (i : ι), Set.Disjoint (y i)) :
                Set.Disjoint fun (i' : (i : ι) → ι' i) => Πˢ i : ι, y i (i' i)
                theorem Set.Set.iProd_isPartition {ι : Type u_7} {ι' : ιType u_8} {x : ιType u_9} {y : (i : ι) → ι' iSet (x i)} (h : ∀ (i : ι), Set.IsPartition (y i)) :
                Set.IsPartition fun (i' : (i : ι) → ι' i) => Πˢ i : ι, y i (i' i)