Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
Set.Product.iProd_to_prod
{ι : Type u_2}
{x : ι → Type u_5}
{y : (i : ι) → Set (x i)}
(p : ↥(iProd y))
(i : ι)
:
↥(y i)
Equations
- Set.Product.iProd_to_prod p i = ⟨p.val i, ⋯⟩
Instances For
def
Set.Product.prod_to_iProd
{ι : Type u_2}
{x : ι → Type u_5}
{y : (i : ι) → Set (x i)}
(p : (i : ι) → ↥(y i))
:
↥(iProd y)
Equations
- Set.Product.prod_to_iProd p = ⟨fun (i : ι) => (p i).val, ⋯⟩
Instances For
theorem
Set.Product.prod_to_iProd_inverse
{ι : Type u_2}
{x : ι → Type u_5}
{y : (i : ι) → Set (x i)}
:
Function.IsInverseOf Set.Product.iProd_to_prod Set.Product.prod_to_iProd
@[simp]
theorem
Set.Set.iProd_isCovering
{ι : Type u_7}
{ι' : ι → Type u_8}
{x : ι → Type u_9}
{y : (i : ι) → ι' i → Set (x i)}
(h : ∀ (i : ι), Set.IsCovering (y i))
:
Set.IsCovering fun (i' : (i : ι) → ι' i) => Πˢ i : ι, y i (i' i)
theorem
Set.Set.iProd_disjoint
{ι : Type u_7}
{ι' : ι → Type u_8}
{x : ι → Type u_9}
{y : (i : ι) → ι' i → Set (x i)}
(h : ∀ (i : ι), Set.Disjoint (y i))
:
Set.Disjoint fun (i' : (i : ι) → ι' i) => Πˢ i : ι, y i (i' i)
theorem
Set.Set.iProd_isPartition
{ι : Type u_7}
{ι' : ι → Type u_8}
{x : ι → Type u_9}
{y : (i : ι) → ι' i → Set (x i)}
(h : ∀ (i : ι), Set.IsPartition (y i))
:
Set.IsPartition fun (i' : (i : ι) → ι' i) => Πˢ i : ι, y i (i' i)