The maximum operation: max x y
.
Equations
- «term_⊔_» = Lean.ParserDescr.trailingNode `«term_⊔_» 68 68 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ⊔ ") (Lean.ParserDescr.cat `term 69))
Instances For
The minimum operation: min x y
.
Equations
- «term_⊓_» = Lean.ParserDescr.trailingNode `«term_⊓_» 69 69 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ⊓ ") (Lean.ParserDescr.cat `term 70))
Instances For
- le_antisymm : ∀ (a b : α), a ≤ b → b ≤ a → a = b
- inf : α → α → α
- inf_le_left : ∀ {x y : α}, InfSemilattice.inf x y ≤ x
- inf_le_right : ∀ {x y : α}, InfSemilattice.inf x y ≤ y
- le_inf_of : ∀ {x y z : α}, z ≤ x → z ≤ y → z ≤ InfSemilattice.inf x y
Instances
Equations
- instMinOfInfSemilattice = { min := InfSemilattice.inf }
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
- le_antisymm : ∀ (a b : α), a ≤ b → b ≤ a → a = b
- sup : α → α → α
- le_sup_left : ∀ {x y : α}, x ≤ SupSemilattice.sup x y
- le_sup_right : ∀ {x y : α}, y ≤ SupSemilattice.sup x y
- sup_le_of : ∀ {x y z : α}, x ≤ z → y ≤ z → SupSemilattice.sup x y ≤ z
Instances
Equations
- instMaxOfSupSemilattice = { max := SupSemilattice.sup }
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
- le_antisymm : ∀ (a b : α), a ≤ b → b ≤ a → a = b
- inf : α → α → α
- inf_le_left : ∀ {x y : α}, InfSemilattice.inf x y ≤ x
- inf_le_right : ∀ {x y : α}, InfSemilattice.inf x y ≤ y
- le_inf_of : ∀ {x y z : α}, z ≤ x → z ≤ y → z ≤ InfSemilattice.inf x y
- sup : α → α → α
- le_sup_left : ∀ {x y : α}, x ≤ Lattice.sup x y
- le_sup_right : ∀ {x y : α}, y ≤ Lattice.sup x y
- sup_le_of : ∀ {x y z : α}, x ≤ z → y ≤ z → Lattice.sup x y ≤ z
Instances
Equations
- instLatticeSet = Lattice.mk (fun (x y : Set α) => x ∪ y) ⋯ ⋯ ⋯