Equations
- RightDirected.ub x y = ⋯.choose
Instances For
Equations
- LeftDirected.lb x y = ⋯.choose
Instances For
@[simp]
theorem
RightDirected.ub_upperBound
{α : Type u_1}
[Preorder α]
[RightDirected α]
{x y : α}
:
UpperBound {x, y} (RightDirected.ub x y)
@[simp]
theorem
LeftDirected.lb_lowerBound
{α : Type u_1}
[Preorder α]
[LeftDirected α]
{x y : α}
:
LowerBound {x, y} (LeftDirected.lb x y)
@[simp]
theorem
RightDirected.le_ub_left
{α : Type u_1}
[Preorder α]
[RightDirected α]
{x y : α}
:
x ≤ RightDirected.ub x y
@[simp]
theorem
RightDirected.le_ub_right
{α : Type u_1}
[Preorder α]
[RightDirected α]
{x y : α}
:
y ≤ RightDirected.ub x y
@[simp]
theorem
LeftDirected.lb_le_left
{α : Type u_1}
[Preorder α]
[LeftDirected α]
{x y : α}
:
LeftDirected.lb x y ≤ x
@[simp]
theorem
LeftDirected.lb_le_right
{α : Type u_1}
[Preorder α]
[LeftDirected α]
{x y : α}
:
LeftDirected.lb x y ≤ y
Equations
- ⋯ = ⋯
Instances For
Equations
- ⋯ = ⋯
Instances For
theorem
RightDirected.maximal_greatest
{α : Type u_1}
[PartialOrder α]
[RightDirected α]
{a : α}
(h : Maximal a)
:
Greatest a
theorem
LeftDirected.minimal_least
{α : Type u_1}
[PartialOrder α]
[LeftDirected α]
{a : α}
(h : Minimal a)
:
Least a
theorem
RightDirected.maximal_iff_greatest
{α : Type u_1}
[PartialOrder α]
[RightDirected α]
{a : α}
:
theorem
rightDirected_op_iff_leftDirected
{α : Type u_1}
[Preorder α]
:
RightDirected (Op α) ↔ LeftDirected α
theorem
leftDirected_op_iff_rightDirected
{α : Type u_1}
[Preorder α]
:
LeftDirected (Op α) ↔ RightDirected α
instance
instRightDirectedPointwise
{ι : Type u_2}
{α : ι → Type u_3}
[(i : ι) → Preorder (α i)]
[∀ (i : ι), RightDirected (α i)]
:
RightDirected (Pointwise ι α)
Equations
- ⋯ = ⋯
instance
instLeftDirectedPointwise
{ι : Type u_2}
{α : ι → Type u_3}
[(i : ι) → Preorder (α i)]
[∀ (i : ι), LeftDirected (α i)]
:
LeftDirected (Pointwise ι α)
Equations
- ⋯ = ⋯
theorem
RightDirected.cofinal_subset
{α : Type u_1}
[Preorder α]
[RightDirected α]
{s : Set α}
(h : Cofinal s)
:
theorem
LeftDirected.cofinal_subset
{α : Type u_1}
[Preorder α]
[LeftDirected α]
{s : Set α}
(h : Coinitial s)
:
LeftDirected ↥s