Documentation

BourbakiLean2.Order.Directed

class RightDirected (α : Type u_2) [Preorder α] :
  • exists_ub : ∀ (x y : α), ∃ (a : α), x a y a
Instances
    noncomputable def RightDirected.ub {α : Type u_1} [Preorder α] [RightDirected α] (x y : α) :
    α
    Equations
    Instances For
      class LeftDirected (α : Type u_2) [Preorder α] :
      • exists_lb : ∀ (x y : α), ∃ (a : α), a x a y
      Instances
        noncomputable def LeftDirected.lb {α : Type u_1} [Preorder α] [LeftDirected α] (x y : α) :
        α
        Equations
        Instances For
          @[simp]
          theorem RightDirected.ub_upperBound {α : Type u_1} [Preorder α] [RightDirected α] {x y : α} :
          @[simp]
          theorem LeftDirected.lb_lowerBound {α : Type u_1} [Preorder α] [LeftDirected α] {x y : α} :
          @[simp]
          theorem RightDirected.le_ub_left {α : Type u_1} [Preorder α] [RightDirected α] {x y : α} :
          @[simp]
          theorem RightDirected.le_ub_right {α : Type u_1} [Preorder α] [RightDirected α] {x y : α} :
          @[simp]
          theorem LeftDirected.lb_le_left {α : Type u_1} [Preorder α] [LeftDirected α] {x y : α} :
          @[simp]
          theorem LeftDirected.lb_le_right {α : Type u_1} [Preorder α] [LeftDirected α] {x y : α} :
          def Greatest.rightDirected {α : Type u_1} [Preorder α] {a : α} (h : Greatest a) :
          Equations
          • =
          Instances For
            def Least.leftDirected {α : Type u_1} [Preorder α] {a : α} (h : Least a) :
            Equations
            • =
            Instances For
              theorem RightDirected.maximal_greatest {α : Type u_1} [PartialOrder α] [RightDirected α] {a : α} (h : Maximal a) :
              theorem LeftDirected.minimal_least {α : Type u_1} [PartialOrder α] [LeftDirected α] {a : α} (h : Minimal a) :
              instance instRightDirectedPointwise {ι : Type u_2} {α : ιType u_3} [(i : ι) → Preorder (α i)] [∀ (i : ι), RightDirected (α i)] :
              Equations
              • =
              instance instLeftDirectedPointwise {ι : Type u_2} {α : ιType u_3} [(i : ι) → Preorder (α i)] [∀ (i : ι), LeftDirected (α i)] :
              Equations
              • =
              theorem RightDirected.cofinal_subset {α : Type u_1} [Preorder α] [RightDirected α] {s : Set α} (h : Cofinal s) :
              theorem LeftDirected.cofinal_subset {α : Type u_1} [Preorder α] [LeftDirected α] {s : Set α} (h : Coinitial s) :