Documentation

BourbakiLean2.Order.Finite

instance instFiniteOp {α : Type u_1} [h : Finite α] :
Finite (Op α)
Equations
  • = h
instance instNonemptyOp {α : Type u_1} [h : Nonempty α] :
Equations
  • = h
theorem RightDirected.finite_bounded_above {α : Type u_1} [Preorder α] [RightDirected α] {a : Set α} [Finite a] :
a.Nonemptya.BoundedAbove
theorem LeftDirected.finite_bounded_above {α : Type u_1} [Preorder α] [h : LeftDirected α] {a : Set α} [Finite a] :
a.Nonemptya.BoundedBelow
theorem SupSemilattice.finite_hasLUB {α : Type u_1} [SupSemilattice α] {a : Set α} [Finite a] :
a.Nonempty∃ (x : α), IsLUB a x
theorem SupSemilattice.finite_hasLUB' {α : Type u_1} [SupSemilattice α] [HasLeast α] {a : Set α} [Finite a] :
∃ (x : α), IsLUB a x
theorem InfSemilattice.finite_hasGLB {α : Type u_1} [InfSemilattice α] {a : Set α} [Finite a] :
a.Nonempty∃ (x : α), IsGLB a x
theorem InfSemilattice.finite_hasGLB' {α : Type u_1} [InfSemilattice α] [HasGreatest α] {a : Set α} [Finite a] :
∃ (x : α), IsGLB a x
theorem TotalOrder.finite_has_greatest {α : Type u_1} [TotalOrder α] {a : Set α} [_hf : Finite a] :
a.Nonempty∃ (x : a), Greatest x
theorem TotalOrder.finite_has_least {α : Type u_1} [TotalOrder α] {a : Set α} [hf : Finite a] (hne : a.Nonempty) :
∃ (x : a), Least x
theorem TotalOrder.finite_greatest {α : Type u_1} [ne : Nonempty α] [TotalOrder α] [Finite α] :
∃ (x : α), Greatest x
theorem TotalOrder.finite_least {α : Type u_1} [ne : Nonempty α] [TotalOrder α] [Finite α] :
∃ (x : α), Least x
Equations
instance partialOrder_finite_inductive {α : Type u_1} [PartialOrder α] [Finite α] [hne : Nonempty α] :
Equations
  • =
theorem PartialOrder.finite_has_maximal {α : Type u_1} [PartialOrder α] [Finite α] [Nonempty α] :
∃ (x : α), Maximal x
theorem PartialOrder.finite_has_minimal {α : Type u_1} [PartialOrder α] [Finite α] [Nonempty α] :
∃ (x : α), Minimal x