Documentation

BourbakiLean2.Order.Inductive

class InductiveOrder (α : Type u_1) [PartialOrder α] :
  • chain_boundedAbove : ∀ {s : Set α}, (∀ (x : α), x s∀ (y : α), y sComparable x y)s.BoundedAbove
Instances
    instance instInductiveOrderSet {α : Type u_1} :
    Equations
    • =
    Equations
    • =
    noncomputable def PartialMap.iUnion {α : Type u_1} {β : αType u_2} {ι : Type u_3} (f : ιPartialMap α β) :
    Equations
    • PartialMap.iUnion f = { carrier := i : ι, (f i).carrier, function := fun (x : (⋃ i : ι, (f i).carrier)) => (f (Classical.choose )).function x.val, }
    Instances For
      @[simp]
      theorem PartialMap.iUnion_lub {α : Type u_1} {β : αType u_2} {ι : Type u_3} {f : ιPartialMap α β} (h : ∀ (i j : ι), Comparable (f i) (f j)) :
      IsLUB (f '' Set.univ) (PartialMap.iUnion f)
      instance instInductiveOrderPartialMap {α : Type u_1} {β : αType u_2} :
      Equations
      • =
      theorem wellOrder_bounded_above_has_maximal {α : Type u_1} [PartialOrder α] (h : ∀ {s : Set α}, IsWellOrder {(x, y) : s × s | x.val y.val}s.BoundedAbove) :
      ∃ (x : α), Maximal x
      theorem InductiveOrder.has_maximal {α : Type u_1} [PartialOrder α] [InductiveOrder α] :
      ∃ (x : α), Maximal x

      zorns lemma

      theorem InductiveOrder.has_maximal_above {α : Type u_1} [PartialOrder α] [InductiveOrder α] (a : α) :
      ∃ (x : α), Maximal x x a
      theorem subset_chain_iUnion_inductive {α : Type u_1} {s : Set (Set α)} (h1 : s.Nonempty) (h : ∀ (t : Set (Set α)), t.Nonemptyt s(∀ (x : Set α), x t∀ (y : Set α), y tx y y x)a : t, a.val s) :
      theorem subset_totally_ordered_maximum {α : Type u_1} {s : Set (Set α)} (h1 : s.Nonempty) (h : ∀ (t : Set (Set α)), t.Nonemptyt s(∀ (x : Set α), x t∀ (y : Set α), y tx y y x)a : t, a.val s) :
      ∃ (x : s), Maximal x
      theorem subset_totally_ordered_minimum {α : Type u_1} {s : Set (Set α)} (h1 : s.Nonempty) (h : ∀ (t : Set (Set α)), t.Nonemptyt s(∀ (x : Set α), x t∀ (y : Set α), y tx y y x)a : t, a.val s) :
      ∃ (x : s), Minimal x