- chain_boundedAbove : ∀ {s : Set α}, (∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → Comparable x y) → s.BoundedAbove
Instances
instance
instInductiveOrderSubtypeMemSetIci
{α : Type u_1}
[PartialOrder α]
[InductiveOrder α]
{a : α}
:
InductiveOrder ↥(Set.Ici a)
Equations
- ⋯ = ⋯
noncomputable def
PartialMap.iUnion
{α : Type u_1}
{β : α → Type u_2}
{ι : Type u_3}
(f : ι → PartialMap α β)
:
PartialMap α β
Equations
- PartialMap.iUnion f = { carrier := ⋃ i : ι, (f i).carrier, function := fun (x : ↥(⋃ i : ι, (f i).carrier)) => (f (Classical.choose ⋯)).function ⟨x.val, ⋯⟩ }
Instances For
@[simp]
theorem
PartialMap.iUnion_lub
{α : Type u_1}
{β : α → Type u_2}
{ι : Type u_3}
{f : ι → PartialMap α β}
(h : ∀ (i j : ι), Comparable (f i) (f j))
:
IsLUB (f '' Set.univ) (PartialMap.iUnion f)
instance
instInductiveOrderPartialMap
{α : Type u_1}
{β : α → Type u_2}
:
InductiveOrder (PartialMap α β)
Equations
- ⋯ = ⋯
theorem
wellOrder_bounded_above_has_maximal
{α : Type u_1}
[PartialOrder α]
(h : ∀ {s : Set α}, IsWellOrder {(x, y) : ↥s × ↥s | x.val ≤ y.val} → s.BoundedAbove)
:
∃ (x : α), Maximal x
theorem
InductiveOrder.has_maximal
{α : Type u_1}
[PartialOrder α]
[InductiveOrder α]
:
∃ (x : α), Maximal x
zorns lemma
theorem
InductiveOrder.has_maximal_above
{α : Type u_1}
[PartialOrder α]
[InductiveOrder α]
(a : α)
: