Documentation

BourbakiLean2.Order.Sets

@[simp]
theorem Set.greatest_iff_univ {α : Type u_1} {x : Set α} :
Greatest x x = Set.univ
@[simp]
theorem Set.least_iff_empty {α : Type u_1} {x : Set α} :
theorem Set.minimal_iff_singleton_nonempty {α : Type u_1} {x : { x : Set α // x.Nonempty }} :
Minimal x ∃ (a : α), x = {a},
theorem Set.intersection_least_of_mem {α : Type u_1} {p : Set αProp} (h : p (⋂ a : { x : Set α // p x }, a.val)) :
Least a : { x : Set α // p x }, a.val, h
theorem Set.union_greatest_of_mem {α : Type u_1} {p : Set αProp} (h : p (⋃ a : { x : Set α // p x }, a.val)) :
Greatest a : { x : Set α // p x }, a.val, h
theorem Set.least_eq_intersection {α : Type u_1} {p : Set αProp} {x : { x : Set α // p x }} (h : Least x) :
x.val = a : { x : Set α // p x }, a.val
theorem Set.greatest_eq_union {α : Type u_1} {p : Set αProp} {x : { x : Set α // p x }} (h : Greatest x) :
x.val = a : { x : Set α // p x }, a.val
@[simp]
theorem Set.iInter_isGLB {α : Type u_1} {s : Set (Set α)} :
IsGLB s (⋂ a : s, a.val)
@[simp]
theorem Set.iUnion_isLUB {α : Type u_1} {s : Set (Set α)} :
IsLUB s (⋃ a : s, a.val)
noncomputable instance Set.instHasLeast {α : Type u_1} :
Equations
  • Set.instHasLeast = { least := , least_le := }
noncomputable instance Set.instHasGreatest {α : Type u_1} :
Equations
  • Set.instHasGreatest = { greatest := Set.univ, le_greatest := }
@[simp]
theorem Set.least_eq {α : Type u_1} :
@[simp]
theorem Set.greatest_eq {α : Type u_1} :
= Set.univ