Documentation
BourbakiLean2
.
Order
.
Sets
Search
Google site search
return to top
source
Imports
Init
BourbakiLean2.Order.GlbLub
BourbakiLean2.Order.MaxMin
BourbakiLean2.Order.Monotone
Imported by
Set
.
greatest_iff_univ
Set
.
least_iff_empty
Set
.
minimal_iff_singleton_nonempty
Set
.
intersection_least_of_mem
Set
.
union_greatest_of_mem
Set
.
least_eq_intersection
Set
.
greatest_eq_union
Set
.
iInter_isGLB
Set
.
iUnion_isLUB
Set
.
instHasLeast
Set
.
instHasGreatest
Set
.
least_eq
Set
.
greatest_eq
source
@[simp]
theorem
Set
.
greatest_iff_univ
{α :
Type
u_1}
{x :
Set
α
}
:
Greatest
x
↔
x
=
Set.univ
source
@[simp]
theorem
Set
.
least_iff_empty
{α :
Type
u_1}
{x :
Set
α
}
:
Least
x
↔
x
=
∅
source
theorem
Set
.
minimal_iff_singleton_nonempty
{α :
Type
u_1}
{x :
{
x
:
Set
α
//
x
.Nonempty
}
}
:
Minimal
x
↔
∃ (
a
:
α
),
x
=
⟨
{
a
}
,
⋯
⟩
source
theorem
Set
.
intersection_least_of_mem
{α :
Type
u_1}
{p :
Set
α
→
Prop
}
(h :
p
(⋂
a
:
{
x
:
Set
α
//
p
x
}
,
a
.val
)
)
:
Least
⟨
⋂
a
:
{
x
:
Set
α
//
p
x
}
,
a
.val
,
h
⟩
source
theorem
Set
.
union_greatest_of_mem
{α :
Type
u_1}
{p :
Set
α
→
Prop
}
(h :
p
(⋃
a
:
{
x
:
Set
α
//
p
x
}
,
a
.val
)
)
:
Greatest
⟨
⋃
a
:
{
x
:
Set
α
//
p
x
}
,
a
.val
,
h
⟩
source
theorem
Set
.
least_eq_intersection
{α :
Type
u_1}
{p :
Set
α
→
Prop
}
{x :
{
x
:
Set
α
//
p
x
}
}
(h :
Least
x
)
:
x
.val
=
⋂
a
:
{
x
:
Set
α
//
p
x
}
,
a
.val
source
theorem
Set
.
greatest_eq_union
{α :
Type
u_1}
{p :
Set
α
→
Prop
}
{x :
{
x
:
Set
α
//
p
x
}
}
(h :
Greatest
x
)
:
x
.val
=
⋃
a
:
{
x
:
Set
α
//
p
x
}
,
a
.val
source
@[simp]
theorem
Set
.
iInter_isGLB
{α :
Type
u_1}
{s :
Set
(
Set
α
)
}
:
IsGLB
s
(⋂
a
:
↥
s
,
a
.val
)
source
@[simp]
theorem
Set
.
iUnion_isLUB
{α :
Type
u_1}
{s :
Set
(
Set
α
)
}
:
IsLUB
s
(⋃
a
:
↥
s
,
a
.val
)
source
noncomputable instance
Set
.
instHasLeast
{α :
Type
u_1}
:
HasLeast
(
Set
α
)
Equations
Set.instHasLeast
=
{
least
:=
∅
,
least_le
:=
⋯
}
source
noncomputable instance
Set
.
instHasGreatest
{α :
Type
u_1}
:
HasGreatest
(
Set
α
)
Equations
Set.instHasGreatest
=
{
greatest
:=
Set.univ
,
le_greatest
:=
⋯
}
source
@[simp]
theorem
Set
.
least_eq
{α :
Type
u_1}
:
⊥
=
∅
source
@[simp]
theorem
Set
.
greatest_eq
{α :
Type
u_1}
:
⊤
=
Set.univ