mem interval iff
mem interval self
intersections
empty iff
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
intersection theorems
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Set.Ioi_inter_Ioi_of_incomparable
{α : Type u_1}
{a b : α}
[SupSemilattice α]
(h : Incomparable a b)
:
@[simp]
@[simp]
@[simp]
theorem
Set.Iio_inter_Iio_of_incomparable
{α : Type u_1}
{a b : α}
[InfSemilattice α]
(h : Incomparable a b)
:
@[simp]
@[simp]
interval class
Equations
- Set.instHasLeastSubtypeMemIcoOfLt h = { least := ⟨a, ⋯⟩, least_le := ⋯ }
Equations
- Set.instHasLeastSubtypeMemIccOfLe h = { least := ⟨a, ⋯⟩, least_le := ⋯ }
instance
Set.instHasGreatestSubtypeMemIic
{α : Type u_1}
[Preorder α]
{a : α}
:
HasGreatest ↥(Set.Iic a)
Equations
- Set.instHasGreatestSubtypeMemIic = { greatest := ⟨a, ⋯⟩, le_greatest := ⋯ }
instance
Set.instHasGreatestSubtypeMemIocOfLt
{α : Type u_1}
[Preorder α]
{a b : α}
(h : a < b)
:
HasGreatest ↥(Set.Ioc a b)
Equations
- Set.instHasGreatestSubtypeMemIocOfLt h = { greatest := ⟨b, ⋯⟩, le_greatest := ⋯ }
instance
Set.instHasGreatestSubtypeMemIccOfLe
{α : Type u_1}
[Preorder α]
{a b : α}
(h : a ≤ b)
:
HasGreatest ↥(Set.Icc a b)
Equations
- Set.instHasGreatestSubtypeMemIccOfLe h = { greatest := ⟨b, ⋯⟩, le_greatest := ⋯ }
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
instance
Set.downwards_has_least
{α : Type}
[Preorder α]
{s : Set α}
[s.IsDownwardsClosed]
(h : s.Nonempty)
[HasLeast α]
:
HasLeast ↥s
Equations
- Set.downwards_has_least h = { least := ⟨⊥, ⋯⟩, least_le := ⋯ }
instance
Set.upwards_has_greatest
{α : Type}
[Preorder α]
{s : Set α}
[s.IsUpwardsClosed]
(h : s.Nonempty)
[HasGreatest α]
:
HasGreatest ↥s
Equations
- Set.upwards_has_greatest h = { greatest := ⟨⊤, ⋯⟩, le_greatest := ⋯ }