Documentation

BourbakiLean2.Order.Intervals

def Set.Ici {α : Type u_1} [Preorder α] (a : α) :
Set α

The interval [a, ∞).

Equations
Instances For
    def Set.Iic {α : Type u_1} [Preorder α] (a : α) :
    Set α

    The interval (-∞, a].

    Equations
    Instances For
      def Set.Ioi {α : Type u_1} [Preorder α] (a : α) :
      Set α

      The interval (a, ∞).

      Equations
      Instances For
        def Set.Iio {α : Type u_1} [Preorder α] (a : α) :
        Set α

        The interval (∞, a).

        Equations
        Instances For
          def Set.Ioo {α : Type u_1} [Preorder α] (a b : α) :
          Set α

          The interval (a,b)

          Equations
          Instances For
            def Set.Ioc {α : Type u_1} [Preorder α] (a b : α) :
            Set α

            The interval (a,b]

            Equations
            Instances For
              def Set.Ico {α : Type u_1} [Preorder α] (a b : α) :
              Set α

              The interval [a,b)

              Equations
              Instances For
                def Set.Icc {α : Type u_1} [Preorder α] (a b : α) :
                Set α

                The interval [a,b]

                Equations
                Instances For

                  mem interval iff

                  @[simp]
                  theorem Set.mem_Ici_iff {α : Type u_1} [Preorder α] {a b : α} :
                  b Set.Ici a a b
                  @[simp]
                  theorem Set.mem_Iic_iff {α : Type u_1} [Preorder α] {a b : α} :
                  b Set.Iic a b a
                  @[simp]
                  theorem Set.mem_Ioi_iff {α : Type u_1} [Preorder α] {a b : α} :
                  b Set.Ioi a a < b
                  @[simp]
                  theorem Set.mem_Iio_iff {α : Type u_1} [Preorder α] {a b : α} :
                  b Set.Iio a b < a
                  @[simp]
                  theorem Set.mem_Ioo_iff {α : Type u_1} [Preorder α] {a b c : α} :
                  c Set.Ioo a b a < c c < b
                  @[simp]
                  theorem Set.mem_Ioc_iff {α : Type u_1} [Preorder α] {a b c : α} :
                  c Set.Ioc a b a < c c b
                  @[simp]
                  theorem Set.mem_Ico_iff {α : Type u_1} [Preorder α] {a b c : α} :
                  c Set.Ico a b a c c < b
                  @[simp]
                  theorem Set.mem_Icc_iff {α : Type u_1} [Preorder α] {a b c : α} :
                  c Set.Icc a b a c c b

                  mem interval self

                  @[simp]
                  theorem Set.mem_Ici_self {α : Type u_1} [Preorder α] {a : α} :
                  @[simp]
                  theorem Set.mem_Iic_self {α : Type u_1} [Preorder α] {a : α} :
                  @[simp]
                  theorem Set.not_mem_Ioi_self {α : Type u_1} [Preorder α] {a : α} :
                  @[simp]
                  theorem Set.not_mem_Iio_self {α : Type u_1} [Preorder α] {a : α} :
                  @[simp]
                  theorem Set.not_mem_Ioo_self_left {α : Type u_1} [Preorder α] {a b : α} :
                  @[simp]
                  theorem Set.not_mem_Ioo_self_right {α : Type u_1} [Preorder α] {a b : α} :
                  @[simp]
                  theorem Set.not_mem_Ioc_self_left {α : Type u_1} [Preorder α] {a b : α} :
                  @[simp]
                  theorem Set.mem_Ioc_self_right_iff_lt {α : Type u_1} [Preorder α] {a b : α} :
                  b Set.Ioc a b a < b
                  @[simp]
                  theorem Set.mem_Ico_self_left_iff_lt {α : Type u_1} [Preorder α] {a b : α} :
                  a Set.Ico a b a < b
                  @[simp]
                  theorem Set.not_mem_Ico_self_right {α : Type u_1} [Preorder α] {a b : α} :
                  @[simp]
                  theorem Set.mem_Icc_self_left_iff_le {α : Type u_1} [Preorder α] {a b : α} :
                  a Set.Icc a b a b
                  @[simp]
                  theorem Set.mem_Icc_self_right_iff_le {α : Type u_1} [Preorder α] {a b : α} :
                  b Set.Icc a b a b

                  intersections

                  @[simp]
                  theorem Set.Ici_inter_Iic_eq_Icc {α : Type u_1} [Preorder α] {a b : α} :

                  [a,∞) ∩ (-∞,b] = [a,b]

                  @[simp]
                  theorem Set.Ioi_inter_Iic_eq_Ioc {α : Type u_1} [Preorder α] {a b : α} :

                  (a,∞] ∩ [-∞,b] = (a,b]

                  @[simp]
                  theorem Set.Ici_inter_Iio_eq_Ico {α : Type u_1} [Preorder α] {a b : α} :

                  [a,∞] ∩ [-∞,b) = [a,b)

                  @[simp]
                  theorem Set.Ioi_inter_Iio_eq_Ioo {α : Type u_1} [Preorder α] {a b : α} :

                  (a,∞] ∩ [-∞,b) = (a,b)

                  theorem Set.Ici_antitone {α : Type u_1} [Preorder α] :
                  Antitone Set.Ici
                  theorem Set.Ici_strictAnti {α : Type u_1} [Preorder α] :
                  theorem Set.Iic_monotone {α : Type u_1} [Preorder α] :
                  Monotone Set.Iic
                  theorem Set.Iic_strictMono {α : Type u_1} [Preorder α] :

                  empty iff

                  @[simp]
                  theorem Set.Icc_empty_iff_not_le {α : Type u_1} [PartialOrder α] {a b : α} :
                  @[simp]
                  theorem Set.Ico_empty_iff_not_lt {α : Type u_1} [PartialOrder α] {a b : α} :
                  Set.Ico a b = ¬a < b
                  @[simp]
                  theorem Set.Ioc_empty_iff_not_lt {α : Type u_1} [PartialOrder α] {a b : α} :
                  Set.Ioc a b = ¬a < b
                  @[simp]
                  theorem Set.Ioi_empty_iff_maximum {α : Type u_1} [PartialOrder α] {a : α} :
                  @[simp]
                  theorem Set.Iio_empty_iff_minimum {α : Type u_1} [PartialOrder α] {a : α} :
                  theorem Set.Ioi_antitone {α : Type u_1} [PartialOrder α] :
                  Antitone Set.Ioi
                  theorem Set.Ioi_strictAnti {α : Type u_1} [PartialOrder α] :
                  theorem Set.Iio_monotone {α : Type u_1} [PartialOrder α] :
                  Monotone Set.Iio
                  theorem Set.Iio_strictAnti {α : Type u_1} [PartialOrder α] :
                  @[simp]
                  theorem Set.Ioi_union_point_eq_Ici {α : Type u_1} [PartialOrder α] {a : α} :
                  @[simp]
                  theorem Set.Iio_union_point_eq_Iic {α : Type u_1} [PartialOrder α] {a : α} :
                  @[simp]
                  theorem Set.Ioo_union_point_eq_Ioc_of_lt {α : Type u_1} [PartialOrder α] {a b : α} (h : a < b) :
                  Set.Ioo a b {b} = Set.Ioc a b
                  @[simp]
                  theorem Set.Icc_self {α : Type u_1} [PartialOrder α] {a : α} :
                  Set.Icc a a = {a}

                  intersection theorems

                  @[simp]
                  theorem Set.Ici_inter_Ici {α : Type u_1} {a b : α} [SupSemilattice α] :
                  @[simp]
                  theorem Set.Ici_inter_Icc {α : Type u_1} {a b c : α} [SupSemilattice α] :
                  Set.Ici a Set.Icc b c = Set.Icc (a b) c
                  @[simp]
                  theorem Set.Ici_inter_Ico {α : Type u_1} {a b c : α} [SupSemilattice α] :
                  Set.Ici a Set.Ico b c = Set.Ico (a b) c
                  @[simp]
                  theorem Set.Iic_inter_Iic {α : Type u_1} {a b : α} [InfSemilattice α] :
                  @[simp]
                  theorem Set.Iic_inter_Ioc {α : Type u_1} {a b c : α} [InfSemilattice α] :
                  Set.Iic a Set.Ioc b c = Set.Ioc b (a c)
                  @[simp]
                  theorem Set.Iic_inter_Icc {α : Type u_1} {a b c : α} [InfSemilattice α] :
                  Set.Iic a Set.Icc b c = Set.Icc b (a c)
                  @[simp]
                  theorem Set.Icc_inter_Icc {α : Type u_1} {a b c d : α} [Lattice α] :
                  Set.Icc a b Set.Icc c d = Set.Icc (a c) (b d)
                  @[simp]
                  theorem Set.Ioi_inter_Ioi_of_le {α : Type u_1} {a b : α} [PartialOrder α] (h : a b) :
                  @[simp]
                  theorem Set.Ioi_inter_Ioi_of_ge {α : Type u_1} {a b : α} [PartialOrder α] (h : b a) :
                  @[simp]
                  theorem Set.Ioi_inter_Ioi_of_incomparable {α : Type u_1} {a b : α} [SupSemilattice α] (h : Incomparable a b) :
                  @[simp]
                  theorem Set.Iio_inter_Iio_of_le {α : Type u_1} {a b : α} [PartialOrder α] (h : a b) :
                  @[simp]
                  theorem Set.Iio_inter_Iio_of_ge {α : Type u_1} {a b : α} [PartialOrder α] (h : b a) :
                  @[simp]
                  theorem Set.Iio_inter_Iio_of_incomparable {α : Type u_1} {a b : α} [InfSemilattice α] (h : Incomparable a b) :
                  @[simp]
                  theorem Set.Iio_compl {α : Type u_1} {a : α} [TotalOrder α] :
                  @[simp]
                  theorem Set.Ici_compl {α : Type u_1} {a : α} [TotalOrder α] :
                  @[simp]
                  theorem Set.Iic_compl {α : Type u_1} {a : α} [TotalOrder α] :
                  @[simp]
                  theorem Set.Ioi_compl {α : Type u_1} {a : α} [TotalOrder α] :
                  theorem Set.iUnion_Iio_of_no_greatest {α : Type u_1} [TotalOrder α] (h : ∀ (a : α), ¬Greatest a) :
                  a : α, Set.Iio a = Set.univ
                  theorem Set.iUnion_Iio_of_greatest {α : Type u_1} {a : α} [TotalOrder α] (h : Greatest a) :
                  a : α, Set.Iio a = {a}
                  @[simp]
                  theorem Set.Iio_subset_Iio_iff {α : Type u_1} {x y : α} [TotalOrder α] :
                  @[simp]
                  theorem Set.Ioi_subset_Ioi_iff {α : Type u_1} {x y : α} [TotalOrder α] :
                  @[simp]
                  theorem Set.Iio_subset_Iic {α : Type u_1} {x : α} [Preorder α] :

                  interval class

                  class Set.IsInterval {α : Type u_1} [Preorder α] (s : Set α) :
                  • mem_of_mem_le_mem : ∀ {a b c : α}, a bb ca sc sb s
                  Instances
                    class Set.IsDownwardsClosed {α : Type u_1} [Preorder α] (s : Set α) :
                    • mem_of_le_mem : ∀ {a b : α}, a bb sa s
                    Instances
                      class Set.IsUpwardsClosed {α : Type u_1} [Preorder α] (s : Set α) :
                      • mem_of_mem_le : ∀ {a b : α}, a ba sb s
                      Instances
                        instance Set.instIsIntervalOfIsUpwardsClosed {α : Type u_1} [Preorder α] {s : Set α} [s.IsUpwardsClosed] :
                        s.IsInterval
                        Equations
                        • =
                        instance Set.instIsIntervalOfIsDownwardsClosed {α : Type u_1} [Preorder α] {s : Set α} [s.IsDownwardsClosed] :
                        s.IsInterval
                        Equations
                        • =
                        instance Set.instHasLeastSubtypeMemIci {α : Type u_1} [Preorder α] {a : α} :
                        Equations
                        • Set.instHasLeastSubtypeMemIci = { least := a, , least_le := }
                        instance Set.instHasLeastSubtypeMemIcoOfLt {α : Type u_1} [Preorder α] {a b : α} (h : a < b) :
                        HasLeast (Set.Ico a b)
                        Equations
                        instance Set.instHasLeastSubtypeMemIccOfLe {α : Type u_1} [Preorder α] {a b : α} (h : a b) :
                        HasLeast (Set.Icc a b)
                        Equations
                        instance Set.instHasGreatestSubtypeMemIic {α : Type u_1} [Preorder α] {a : α} :
                        Equations
                        • Set.instHasGreatestSubtypeMemIic = { greatest := a, , le_greatest := }
                        instance Set.instHasGreatestSubtypeMemIocOfLt {α : Type u_1} [Preorder α] {a b : α} (h : a < b) :
                        Equations
                        instance Set.instHasGreatestSubtypeMemIccOfLe {α : Type u_1} [Preorder α] {a b : α} (h : a b) :
                        Equations
                        theorem Set.mem_of_mem_le_mem {α : Type u_1} [Preorder α] {a b c : α} {s : Set α} [s.IsInterval] (h : a b) (h' : b c) (ha : a s) (hc : c s) :
                        b s
                        theorem Set.mem_of_le_mem {α : Type u_1} [Preorder α] {s : Set α} [s.IsDownwardsClosed] {a b : α} (h : a b) (hb : b s) :
                        a s
                        theorem Set.mem_of_mem_le {α : Type u_1} [Preorder α] {s : Set α} [s.IsUpwardsClosed] {a b : α} (h : a b) (ha : a s) :
                        b s
                        instance Set.instIsUpwardsClosedIci {α : Type u_1} [Preorder α] {a : α} :
                        (Set.Ici a).IsUpwardsClosed
                        Equations
                        • =
                        instance Set.instIsDownwardsClosedIic {α : Type u_1} [Preorder α] {a : α} :
                        (Set.Iic a).IsDownwardsClosed
                        Equations
                        • =
                        instance Set.instIsUpwardsClosedIoi {α : Type u_1} [Preorder α] {a : α} :
                        (Set.Ioi a).IsUpwardsClosed
                        Equations
                        • =
                        instance Set.instIsDownwardsClosedIio {α : Type u_1} [Preorder α] {a : α} :
                        (Set.Iio a).IsDownwardsClosed
                        Equations
                        • =
                        instance Set.instIsIntervalIoo {α : Type u_1} [Preorder α] {a b : α} :
                        (Set.Ioo a b).IsInterval
                        Equations
                        • =
                        instance Set.instIsIntervalIoc {α : Type u_1} [Preorder α] {a b : α} :
                        (Set.Ioc a b).IsInterval
                        Equations
                        • =
                        instance Set.instIsIntervalIco {α : Type u_1} [Preorder α] {a b : α} :
                        (Set.Ico a b).IsInterval
                        Equations
                        • =
                        instance Set.instIsIntervalIcc {α : Type u_1} [Preorder α] {a b : α} :
                        (Set.Icc a b).IsInterval
                        Equations
                        • =
                        instance Set.instIsDownwardsClosedEmptyCollection {α : Type u_1} [Preorder α] :
                        .IsDownwardsClosed
                        Equations
                        • =
                        instance Set.instIsUpwardsClosedEmptyCollection {α : Type u_1} [Preorder α] :
                        .IsUpwardsClosed
                        Equations
                        • =
                        instance Set.instIsDownwardsClosedUniv {α : Type u_1} [Preorder α] :
                        Set.univ.IsDownwardsClosed
                        Equations
                        • =
                        instance Set.instIsUpwardsClosedUniv {α : Type u_1} [Preorder α] :
                        Set.univ.IsUpwardsClosed
                        Equations
                        • =
                        instance Set.instIsIntervalInter {α : Type u_1} [Preorder α] {s t : Set α} [s.IsInterval] [t.IsInterval] :
                        (s t).IsInterval
                        Equations
                        • =
                        instance Set.instIsIntervalIInter {α : Type u_1} [Preorder α] {ι : Type u_2} {s : ιSet α} [∀ (i : ι), (s i).IsInterval] :
                        (⋂ i : ι, s i).IsInterval
                        Equations
                        • =
                        instance Set.instIsDownwardsClosedInter {α : Type u_1} [Preorder α] {s t : Set α} [s.IsDownwardsClosed] [t.IsDownwardsClosed] :
                        (s t).IsDownwardsClosed
                        Equations
                        • =
                        instance Set.instIsDownwardsClosedIInter {α : Type u_1} [Preorder α] {ι : Type u_2} {s : ιSet α} [∀ (i : ι), (s i).IsDownwardsClosed] :
                        (⋂ i : ι, s i).IsDownwardsClosed
                        Equations
                        • =
                        instance Set.instIsUpwardsClosedInter {α : Type u_1} [Preorder α] {s t : Set α} [s.IsUpwardsClosed] [t.IsUpwardsClosed] :
                        (s t).IsUpwardsClosed
                        Equations
                        • =
                        instance Set.instIsUpwardsClosedIInter {α : Type u_1} [Preorder α] {ι : Type u_2} {s : ιSet α} [∀ (i : ι), (s i).IsUpwardsClosed] :
                        (⋂ i : ι, s i).IsUpwardsClosed
                        Equations
                        • =
                        instance Set.instIsDownwardsClosedUnion {α : Type u_1} [Preorder α] {s t : Set α} [s.IsDownwardsClosed] [t.IsDownwardsClosed] :
                        (s t).IsDownwardsClosed
                        Equations
                        • =
                        instance Set.IsDownwardsClosed.iUnion {α : Type u_1} [Preorder α] {ι : Type u_2} {s : ιSet α} [∀ (i : ι), (s i).IsDownwardsClosed] :
                        (⋃ i : ι, s i).IsDownwardsClosed
                        Equations
                        • =
                        instance Set.instIsUpwardsClosedUnion {α : Type u_1} [Preorder α] {s t : Set α} [s.IsUpwardsClosed] [t.IsUpwardsClosed] :
                        (s t).IsUpwardsClosed
                        Equations
                        • =
                        instance Set.instIsUpwardsClosedIUnion {α : Type u_1} [Preorder α] {ι : Type u_2} {s : ιSet α} [∀ (i : ι), (s i).IsUpwardsClosed] :
                        (⋃ i : ι, s i).IsUpwardsClosed
                        Equations
                        • =
                        instance Set.instIsDownwardsClosedImageSubtypeMemVal {α : Type u_1} [Preorder α] {s : Set α} [s.IsDownwardsClosed] {t : Set s} [t.IsDownwardsClosed] :
                        (Subtype.val '' t).IsDownwardsClosed
                        Equations
                        • =
                        instance Set.instIsUpwardsClosedImageSubtypeMemVal {α : Type u_1} [Preorder α] {s : Set α} [s.IsUpwardsClosed] {t : Set s} [t.IsUpwardsClosed] :
                        (Subtype.val '' t).IsUpwardsClosed
                        Equations
                        • =
                        instance Set.instIsIntervalImageSubtypeMemVal {α : Type u_1} [Preorder α] {s : Set α} [s.IsInterval] {t : Set s} [t.IsInterval] :
                        (Subtype.val '' t).IsInterval
                        Equations
                        • =
                        instance Set.instIsIntervalSingleton {α : Type u_1} {a : α} [PartialOrder α] :
                        {a}.IsInterval
                        Equations
                        • =
                        instance Set.downwards_has_least {α : Type} [Preorder α] {s : Set α} [s.IsDownwardsClosed] (h : s.Nonempty) [HasLeast α] :
                        Equations
                        instance Set.upwards_has_greatest {α : Type} [Preorder α] {s : Set α} [s.IsUpwardsClosed] (h : s.Nonempty) [HasGreatest α] :
                        Equations