Documentation
BourbakiLean2
.
Function
.
CharacteristicFunction
Search
Google site search
return to top
source
Imports
Init
BourbakiLean2.Data.Nat.Basic
Imported by
Set
.
charfun
Set
.
charfun_one_iff
Set
.
charfun_zero_iff
Set
.
charfun_zero_or_one
Set
.
charfun_empty
Set
.
charfun_univ
Set
.
charfun_inter
Set
.
charfun_union_inter
Set
.
charfun_union
Set
.
charfun_inj
Set
.
charfun_compl
source
noncomputable def
Set
.
charfun
{α :
Type
u_1}
(a :
Set
α
)
:
α
→
Nat
Equations
a
.charfun
x
=
if
x
∈
a
then
1
else
0
Instances For
source
@[simp]
theorem
Set
.
charfun_one_iff
{α :
Type
u_1}
{a :
Set
α
}
{x :
α
}
:
a
.charfun
x
=
1
↔
x
∈
a
source
@[simp]
theorem
Set
.
charfun_zero_iff
{α :
Type
u_1}
{a :
Set
α
}
{x :
α
}
:
a
.charfun
x
=
0
↔
¬
x
∈
a
source
theorem
Set
.
charfun_zero_or_one
{α :
Type
u_1}
(a :
Set
α
)
(x :
α
)
:
a
.charfun
x
=
0
∨
a
.charfun
x
=
1
source
@[simp]
theorem
Set
.
charfun_empty
{α :
Type
u_1}
:
∅
.charfun
=
fun (
x
:
α
) =>
0
source
@[simp]
theorem
Set
.
charfun_univ
{α :
Type
u_1}
:
Set.univ
.charfun
=
fun (
x
:
α
) =>
1
source
@[simp]
theorem
Set
.
charfun_inter
{α :
Type
u_1}
{a b :
Set
α
}
:
(
a
∩
b
)
.charfun
=
fun (
x
:
α
) =>
a
.charfun
x
*
b
.charfun
x
source
theorem
Set
.
charfun_union_inter
{α :
Type
u_1}
{a b :
Set
α
}
{x :
α
}
:
(
a
∩
b
)
.charfun
x
+
(
a
∪
b
)
.charfun
x
=
a
.charfun
x
+
b
.charfun
x
source
theorem
Set
.
charfun_union
{α :
Type
u_1}
{a b :
Set
α
}
:
(
a
∪
b
)
.charfun
=
fun (
x
:
α
) =>
a
.charfun
x
+
b
.charfun
x
-
(
a
∩
b
)
.charfun
x
source
theorem
Set
.
charfun_inj
{α :
Type
u_1}
:
Function.Injective
Set.charfun
source
theorem
Set
.
charfun_compl
{α :
Type
u_1}
{a :
Set
α
}
:
a
ᶜ
.charfun
=
fun (
x
:
α
) =>
1
-
a
.charfun
x