Documentation

BourbakiLean2.Function.CharacteristicFunction

noncomputable def Set.charfun {α : Type u_1} (a : Set α) :
αNat
Equations
  • a.charfun x = if x a then 1 else 0
Instances For
    @[simp]
    theorem Set.charfun_one_iff {α : Type u_1} {a : Set α} {x : α} :
    a.charfun x = 1 x a
    @[simp]
    theorem Set.charfun_zero_iff {α : Type u_1} {a : Set α} {x : α} :
    a.charfun x = 0 ¬x a
    theorem Set.charfun_zero_or_one {α : Type u_1} (a : Set α) (x : α) :
    a.charfun x = 0 a.charfun x = 1
    @[simp]
    theorem Set.charfun_empty {α : Type u_1} :
    .charfun = fun (x : α) => 0
    @[simp]
    theorem Set.charfun_univ {α : Type u_1} :
    Set.univ.charfun = fun (x : α) => 1
    @[simp]
    theorem Set.charfun_inter {α : Type u_1} {a b : Set α} :
    (a b).charfun = fun (x : α) => a.charfun x * b.charfun x
    theorem Set.charfun_union_inter {α : Type u_1} {a b : Set α} {x : α} :
    (a b).charfun x + (a b).charfun x = a.charfun x + b.charfun x
    theorem Set.charfun_union {α : Type u_1} {a b : Set α} :
    (a b).charfun = fun (x : α) => a.charfun x + b.charfun x - (a b).charfun x
    theorem Set.charfun_inj {α : Type u_1} :
    Function.Injective Set.charfun
    theorem Set.charfun_compl {α : Type u_1} {a : Set α} :
    a.charfun = fun (x : α) => 1 - a.charfun x