Documentation
BourbakiLean2
.
Data
.
Nat
.
Basic
Search
Google site search
return to top
source
Imports
Init
BourbakiLean2.Set.FiniteCardinal
Imported by
Nat
.
preorder
Nat
.
partialOrder
Nat
.
totalOrder
Nat
.
WellOrder
Nat
.
le_one
Nat
.
one_le_iff_ne_zero
Nat
.
le_iff_exists_eq_add
Nat
.
le_iff_exists_eq_add'
Nat
.
lt_two_pow
Nat
.
lt_pow_ge_lt
Nat
.
ind_start
Nat
.
ind_start_end
Nat
.
ind_end_start
Nat
.
lt_iff_exists_eq_add'
Nat
.
zero_least
Nat
.
monotone_of_le_succ
Nat
.
strictMono_of_lt_succ
source
instance
Nat
.
preorder
:
Preorder
Nat
Equations
Nat.preorder
=
Preorder.mk
Nat.le_refl
⋯
⋯
source
instance
Nat
.
partialOrder
:
PartialOrder
Nat
Equations
Nat.partialOrder
=
PartialOrder.mk
⋯
source
instance
Nat
.
totalOrder
:
TotalOrder
Nat
Equations
Nat.totalOrder
=
TotalOrder.mk
Nat.le_total
source
instance
Nat
.
WellOrder
:
WellOrder
Nat
Equations
Nat.WellOrder
=
WellOrder.mk
@
Nat.WellOrder.proof_1
source
theorem
Nat
.
le_one
{n :
Nat
}
:
n
≤
1
↔
n
=
0
∨
n
=
1
source
theorem
Nat
.
one_le_iff_ne_zero
{n :
Nat
}
:
1
≤
n
↔
n
≠
0
source
theorem
Nat
.
le_iff_exists_eq_add
{n m :
Nat
}
:
n
≤
m
↔
∃ (
p
:
Nat
),
m
=
p
+
n
source
theorem
Nat
.
le_iff_exists_eq_add'
{n m :
Nat
}
:
n
≤
m
↔
∃ (
p
:
Nat
),
m
=
n
+
p
source
theorem
Nat
.
lt_two_pow
{n :
Nat
}
:
n
<
2
^
n
source
theorem
Nat
.
lt_pow_ge_lt
{n m :
Nat
}
(h :
2
≤
n
)
:
m
<
n
^
m
source
def
Nat
.
ind_start
{motive :
Nat
→
Prop
}
{start :
Nat
}
(hstart :
motive
start
)
(succ :
∀ (
n
:
Nat
),
start
≤
n
→
motive
n
→
motive
(
n
+
1
)
)
(n :
Nat
)
:
start
≤
n
→
motive
n
Equations
⋯
=
⋯
Instances For
source
def
Nat
.
ind_start_end
{motive :
Nat
→
Prop
}
{start stp :
Nat
}
(hstart :
motive
start
)
(succ :
∀ (
n
:
Nat
),
start
≤
n
→
n
<
stp
→
motive
n
→
motive
(
n
+
1
)
)
(n :
Nat
)
:
start
≤
n
→
n
≤
stp
→
motive
n
Equations
⋯
=
⋯
Instances For
source
def
Nat
.
ind_end_start
{motive :
Nat
→
Prop
}
{start stp :
Nat
}
(hstp :
motive
stp
)
(succ :
∀ (
n
:
Nat
),
start
≤
n
→
n
<
stp
→
motive
(
n
+
1
)
→
motive
n
)
(n :
Nat
)
:
start
≤
n
→
n
≤
stp
→
motive
n
Equations
⋯
=
⋯
Instances For
source
theorem
Nat
.
lt_iff_exists_eq_add'
{n m :
Nat
}
:
n
<
m
↔
∃ (
p
:
Nat
),
p
>
0
∧
m
=
n
+
p
source
@[simp]
theorem
Nat
.
zero_least
:
⊥
=
0
source
theorem
Nat
.
monotone_of_le_succ
{α :
Type
u_1}
[
Preorder
α
]
{f :
Nat
→
α
}
(h :
∀ (
n
:
Nat
),
f
n
≤
f
(
n
+
1
)
)
:
Monotone
f
source
theorem
Nat
.
strictMono_of_lt_succ
{α :
Type
u_1}
[
PartialOrder
α
]
{f :
Nat
→
α
}
(h :
∀ (
n
:
Nat
),
f
n
<
f
(
n
+
1
)
)
:
StrictMonotone
f