Documentation
BourbakiLean2
.
Combinatorics
.
Binom
Search
Google site search
return to top
source
Imports
Init
BourbakiLean2.Combinatorics.PartitionProps
Imported by
Nat
.
binom_symmetric
Nat
.
binom_self
Nat
.
sum_binom
Nat
.
binom_succ_succ_of_le
Nat
.
binom_succ_succ
Nat
.
binom_zero_succ
Nat
.
binom_zero
Nat
.
factorial_eq_binom_mul
Nat
.
binom_one
Nat
.
binom_two
source
theorem
Nat
.
binom_symmetric
{n k :
Nat
}
(h :
k
≤
n
)
:
n
.binom
k
=
n
.binom
(
n
-
k
)
source
@[simp]
theorem
Nat
.
binom_self
(n :
Nat
)
:
n
.binom
n
=
1
source
theorem
Nat
.
sum_binom
{n :
Nat
}
:
Nat.sum_ft
0
(
n
+
1
)
n
.binom
=
2
^
n
source
theorem
Nat
.
binom_succ_succ_of_le
{n k :
Nat
}
(h :
k
+
1
≤
n
)
:
(
n
+
1
)
.binom
(
k
+
1
)
=
n
.binom
(
k
+
1
)
+
n
.binom
k
source
@[simp]
theorem
Nat
.
binom_succ_succ
{n k :
Nat
}
:
(
n
+
1
)
.binom
(
k
+
1
)
=
n
.binom
(
k
+
1
)
+
n
.binom
k
source
@[simp]
theorem
Nat
.
binom_zero_succ
{k :
Nat
}
:
Nat.binom
0
(
k
+
1
)
=
0
source
@[simp]
theorem
Nat
.
binom_zero
{n :
Nat
}
:
n
.binom
0
=
1
source
theorem
Nat
.
factorial_eq_binom_mul
{n :
Nat
}
(k :
Nat
)
(h :
k
≤
n
)
:
n
.binom
k
*
k
.factorial
*
(
n
-
k
)
.factorial
=
n
.factorial
source
@[simp]
theorem
Nat
.
binom_one
{n :
Nat
}
:
n
.binom
1
=
n
source
@[simp]
theorem
Nat
.
binom_two
{n :
Nat
}
:
n
.binom
2
=
n
*
(
n
-
1
)
/
2