Documentation

BourbakiLean2.Combinatorics.PartitionProps

def Combinatorics.Partitions.FittingPartition (α : Type u_1) [Finite α] (k : Nat) (x : NatNat) :
Set ((Set.Iio k)Set α)
Equations
Instances For
    @[simp]
    theorem Combinatorics.Partitions.FittingPartition.image_bij_takes_value {α : Type} [Finite α] {k : Nat} {x : NatNat} {h : Function.Bijection α α} {y z : (Combinatorics.Partitions.FittingPartition α k x)} :
    Combinatorics.Partitions.FittingPartition.image_bij h y = z ∀ (i : (Set.Iio k)), ∃ (h' : Function.Bijection (y.val i) (z.val i)), ∀ (x_1 : (y.val i)), (h'.val x_1).val = h.val x_1.val
    noncomputable def Combinatorics.Partitions.FittingPartition.preimage_to_bijections {α : Type} [Finite α] {k : Nat} {x : NatNat} {y z : (Combinatorics.Partitions.FittingPartition α k x)} :
    Function.Bijection (↥{f : Function.Bijection α α | ∀ (i : (Set.Iio k)), ∃ (h' : Function.Bijection (y.val i) (z.val i)), ∀ (x_2 : (y.val i)), (h'.val x_2).val = f.val x_2.val}) ((i : (Set.Iio k)) → Function.Bijection (y.val i) (z.val i))
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem Combinatorics.Partitions.fittingPartition_nonempty {α : Type} [Finite α] {k : Nat} {x : NatNat} (hsum : Nat.sum_ft 0 k x = (Finite.ftype α).cardinality) :
      theorem Combinatorics.Partitions.cardinality_partitions' {α : Type} [Finite α] {k n : Nat} {x : NatNat} (hn : (Finite.ftype α).cardinality = n) (hsum : Nat.sum_ft 0 k x = n) :
      ((Finite.ftype (Combinatorics.Partitions.FittingPartition α k x)).cardinality * Nat.prod_ft 0 k fun (i : Nat) => (x i).factorial) = n.factorial
      theorem Combinatorics.Partitions.cardinality_partitions {α : Type} [Finite α] {k : Nat} {x : NatNat} (hn : (Finite.ftype α).cardinality = Nat.sum_ft 0 k x) :
      ((Finite.ftype (Combinatorics.Partitions.FittingPartition α k x)).cardinality * Nat.prod_ft 0 k fun (i : Nat) => (x i).factorial) = (Finite.ftype α).cardinality.factorial
      theorem Combinatorics.Partitions.cardinality_partitions_div {α : Type} [Finite α] {k : Nat} {x : NatNat} (hn : (Finite.ftype α).cardinality = Nat.sum_ft 0 k x) :
      (Finite.ftype (Combinatorics.Partitions.FittingPartition α k x)).cardinality = (Finite.ftype α).cardinality.factorial / Nat.prod_ft 0 k fun (i : Nat) => (x i).factorial
      noncomputable def Combinatorics.Partitions.FittingPartition.val_1_eq_compl_0_of_2 {α : Type} [Finite α] {x : (Set.Iio 2)Set α} (h : Set.IsPartition x) :
      x 1, = (x 0, )
      Equations
      • =
      Instances For
        noncomputable def Combinatorics.Partitions.FittingPartition.subset_as {α : Type} [Finite α] {k : Nat} :
        Function.Bijection (Combinatorics.Partitions.FittingPartition α 2 fun (i : Nat) => if i = 0 then k else (Finite.ftype α).cardinality - k) {a : Set α | (Finite.ftype a).cardinality = k}
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem Combinatorics.cardinality_subset_of_size {α : Type} [Finite α] {k : Nat} :
          (Finite.ftype {s : Set α | (Finite.ftype s).cardinality = k}).cardinality = (Finite.ftype α).cardinality.binom k
          theorem Combinatorics.cardinality_strict_mono_of_size {α β : Type} [Finite α] [Finite β] [TotalOrder α] [TotalOrder β] :
          (Finite.ftype {f : αβ | StrictMonotone f}).cardinality = (Finite.ftype β).cardinality.binom (Finite.ftype α).cardinality