Equations
- Combinatorics.Partitions.FittingPartition α k x = {y : ↥(Set.Iio k) → Set α | Set.IsPartition y ∧ ∀ (i : Nat) (h : i ∈ Set.Iio k), (Finite.ftype ↥(y ⟨i, h⟩)).cardinality = x i}
Instances For
def
Combinatorics.Partitions.FittingPartition.image_bij
{α : Type}
[Finite α]
{k : Nat}
{x : Nat → Nat}
(h : Function.Bijection α α)
(y : ↥(Combinatorics.Partitions.FittingPartition α k x))
:
Equations
- Combinatorics.Partitions.FittingPartition.image_bij h y = ⟨fun (i : ↥(Set.Iio k)) => h.val '' y.val i, ⋯⟩
Instances For
@[simp]
theorem
Combinatorics.Partitions.FittingPartition.image_bij_takes_value
{α : Type}
[Finite α]
{k : Nat}
{x : Nat → Nat}
{h : Function.Bijection α α}
{y z : ↥(Combinatorics.Partitions.FittingPartition α k x)}
:
Combinatorics.Partitions.FittingPartition.image_bij h y = z ↔ ∀ (i : ↥(Set.Iio k)),
∃ (h' : Function.Bijection ↥(y.val i) ↥(z.val i)), ∀ (x_1 : ↥(y.val i)), (h'.val x_1).val = h.val x_1.val
noncomputable def
Combinatorics.Partitions.FittingPartition.preimage_to_bijections
{α : Type}
[Finite α]
{k : Nat}
{x : Nat → Nat}
{y z : ↥(Combinatorics.Partitions.FittingPartition α k x)}
:
Function.Bijection
(↥{f : Function.Bijection α α |
∀ (i : ↥(Set.Iio k)),
∃ (h' : Function.Bijection ↥(y.val i) ↥(z.val i)), ∀ (x_2 : ↥(y.val i)), (h'.val x_2).val = f.val x_2.val})
((i : ↥(Set.Iio k)) → Function.Bijection ↥(y.val i) ↥(z.val i))
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Combinatorics.Partitions.fittingPartition_nonempty
{α : Type}
[Finite α]
{k : Nat}
{x : Nat → Nat}
(hsum : Nat.sum_ft 0 k x = (Finite.ftype α).cardinality)
:
(Combinatorics.Partitions.FittingPartition α k x).Nonempty
theorem
Combinatorics.Partitions.cardinality_partitions'
{α : Type}
[Finite α]
{k n : Nat}
{x : Nat → Nat}
(hn : (Finite.ftype α).cardinality = n)
(hsum : Nat.sum_ft 0 k x = n)
:
((Finite.ftype ↥(Combinatorics.Partitions.FittingPartition α k x)).cardinality * Nat.prod_ft 0 k fun (i : Nat) => (x i).factorial) = n.factorial
theorem
Combinatorics.Partitions.cardinality_partitions
{α : Type}
[Finite α]
{k : Nat}
{x : Nat → Nat}
(hn : (Finite.ftype α).cardinality = Nat.sum_ft 0 k x)
:
((Finite.ftype ↥(Combinatorics.Partitions.FittingPartition α k x)).cardinality * Nat.prod_ft 0 k fun (i : Nat) => (x i).factorial) = (Finite.ftype α).cardinality.factorial
theorem
Combinatorics.Partitions.cardinality_partitions_div
{α : Type}
[Finite α]
{k : Nat}
{x : Nat → Nat}
(hn : (Finite.ftype α).cardinality = Nat.sum_ft 0 k x)
:
(Finite.ftype ↥(Combinatorics.Partitions.FittingPartition α k x)).cardinality = (Finite.ftype α).cardinality.factorial / Nat.prod_ft 0 k fun (i : Nat) => (x i).factorial
noncomputable def
Combinatorics.Partitions.FittingPartition.val_1_eq_compl_0_of_2
{α : Type}
[Finite α]
{x : ↥(Set.Iio 2) → Set α}
(h : Set.IsPartition x)
:
Equations
- ⋯ = ⋯
Instances For
noncomputable def
Combinatorics.Partitions.FittingPartition.subset_as
{α : Type}
[Finite α]
{k : Nat}
:
Function.Bijection
↥(Combinatorics.Partitions.FittingPartition α 2 fun (i : Nat) =>
if i = 0 then k else (Finite.ftype α).cardinality - k)
↥{a : Set α | (Finite.ftype ↥a).cardinality = k}
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Combinatorics.cardinality_subset_of_size
{α : Type}
[Finite α]
{k : Nat}
:
(Finite.ftype ↥{s : Set α | (Finite.ftype ↥s).cardinality = k}).cardinality = (Finite.ftype α).cardinality.binom k
theorem
Combinatorics.cardinality_strict_mono_of_size
{α β : Type}
[Finite α]
[Finite β]
[TotalOrder α]
[TotalOrder β]
:
(Finite.ftype ↥{f : α → β | StrictMonotone f}).cardinality = (Finite.ftype β).cardinality.binom (Finite.ftype α).cardinality