Documentation

BourbakiLean2.Order.BoundedFunctions

def Function.BoundedBelow {α : Type u_1} {β : Type u_2} [Preorder β] (f : αβ) :
Equations
Instances For
    def Function.BoundedAbove {α : Type u_1} {β : Type u_2} [Preorder β] (f : αβ) :
    Equations
    Instances For
      def Function.Bounded {α : Type u_1} {β : Type u_2} [Preorder β] (f : αβ) :
      Equations
      Instances For
        @[simp]
        theorem Function.boundedBelow_iff {α : Type u_1} {β : Type u_2} [Preorder β] {f : αβ} :
        Function.BoundedBelow f ∃ (x : β), ∀ (a : α), x f a
        @[simp]
        theorem Function.boundedAbove_iff {α : Type u_1} {β : Type u_2} [Preorder β] {f : αβ} :
        Function.BoundedAbove f ∃ (x : β), ∀ (a : α), f a x
        theorem Function.bounded_iff {α : Type u_1} {β : Type u_2} [Preorder β] {f : αβ} :
        Function.Bounded f ∃ (x : β), ∃ (y : β), ∀ (a : α), f a x y f a
        theorem Function.BoundedBelow.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : βγ} (g : αβ) [Preorder γ] (h : Function.BoundedBelow f) :
        theorem Function.BoundedAbove.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : βγ} (g : αβ) [Preorder γ] (h : Function.BoundedAbove f) :
        theorem Function.Bounded.comp {α : Type u_1} {β : Type u_2} {γ : Type u_3} {f : βγ} (g : αβ) [Preorder γ] (h : Function.Bounded f) :
        theorem boundedBelow_iff_val_boundedBelow {α : Type u_1} [Preorder α] {t : Set α} :
        t.BoundedBelow Function.BoundedBelow Subtype.val
        theorem boundedAbove_iff_val_boundedAbove {α : Type u_1} [Preorder α] {t : Set α} :
        t.BoundedAbove Function.BoundedAbove Subtype.val
        theorem bounded_iff_val_bounded {α : Type u_1} [Preorder α] {t : Set α} :
        t.Bounded Function.Bounded Subtype.val