Equations
- Function.BoundedBelow f = (f '' Set.univ).BoundedBelow
Instances For
Equations
- Function.BoundedAbove f = (f '' Set.univ).BoundedAbove
Instances For
Equations
- Function.Bounded f = (f '' Set.univ).Bounded
Instances For
@[simp]
theorem
Function.boundedBelow_iff
{α : Type u_1}
{β : Type u_2}
[Preorder β]
{f : α → β}
:
Function.BoundedBelow f ↔ ∃ (x : β), ∀ (a : α), x ≤ f a
@[simp]
theorem
Function.boundedAbove_iff
{α : Type u_1}
{β : Type u_2}
[Preorder β]
{f : α → β}
:
Function.BoundedAbove f ↔ ∃ (x : β), ∀ (a : α), f a ≤ x
@[simp]
theorem
Function.bounded_iff
{α : Type u_1}
{β : Type u_2}
[Preorder β]
{f : α → β}
:
Function.Bounded f ↔ ∃ (x : β), ∃ (y : β), ∀ (a : α), f a ≤ x ∧ y ≤ f a
theorem
Function.BoundedBelow.comp
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{f : β → γ}
(g : α → β)
[Preorder γ]
(h : Function.BoundedBelow f)
:
Function.BoundedBelow (f ∘ g)
theorem
Function.BoundedAbove.comp
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{f : β → γ}
(g : α → β)
[Preorder γ]
(h : Function.BoundedAbove f)
:
Function.BoundedAbove (f ∘ g)
theorem
Function.Bounded.comp
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{f : β → γ}
(g : α → β)
[Preorder γ]
(h : Function.Bounded f)
:
Function.Bounded (f ∘ g)
theorem
boundedBelow_iff_val_boundedBelow
{α : Type u_1}
[Preorder α]
{t : Set α}
:
t.BoundedBelow ↔ Function.BoundedBelow Subtype.val
theorem
boundedAbove_iff_val_boundedAbove
{α : Type u_1}
[Preorder α]
{t : Set α}
:
t.BoundedAbove ↔ Function.BoundedAbove Subtype.val
theorem
bounded_iff_val_bounded
{α : Type u_1}
[Preorder α]
{t : Set α}
:
t.Bounded ↔ Function.Bounded Subtype.val