Documentation

BourbakiLean2.Order.Hom

structure OrderHom (α : Type u_3) (β : Type u_4) [Preorder α] [Preorder β] :
Type (max u_3 u_4)
  • toFun : αβ

    The underlying function of an OrderHom.

  • monotone : Monotone self.toFun

    The underlying function of an OrderHom is monotone.

Instances For
    theorem OrderHom.eq_iff {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f g : α →o β} :
    f = g f.toFun = g.toFun
    instance instCoeFunOrderHomForall {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] :
    CoeFun (α →o β) fun (x : α →o β) => αβ
    Equations
    • instCoeFunOrderHomForall = { coe := OrderHom.toFun }
    instance instPreorderOrderHom {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] :
    Preorder (α →o β)
    Equations
    instance instPartialOrderOrderHom {α : Type u_1} {β : Type u_2} [Preorder α] [PartialOrder β] :
    Equations