Documentation

BourbakiLean2.Order.Quotient

instance instLEQuotCurry_bourbakiLean2 {α : Type u_1} {r : Relation α α} [LE α] :
Equations
instance instPreorderQuotCurryOfIsEquivalence {α : Type u_3} {r : Relation α α} [r.IsEquivalence] [Preorder α] :
Equations
  • instPreorderQuotCurryOfIsEquivalence = Preorder.mk
theorem Quot.monotone_of_comp_monotone {α : Type u_1} {β : Type u_2} {r : Relation α α} [LE α] [LE β] {g : Quot (Function.curry r)β} (h : Monotone (g Quot.mk (Function.curry r))) :
theorem Quot.mk_monotone_iff {α : Type u_1} {r : Relation α α} [Preorder α] :
Monotone (Quot.mk (Function.curry r)) ∀ (x x' y : α), x yQuot.mk (Function.curry r) x' = Quot.mk (Function.curry r) x∃ (y' : α), Quot.mk (Function.curry r) y' = Quot.mk (Function.curry r) y x' y'
def WeaklyOrderCompatible {α : Type u_1} [Preorder α] (r : Relation α α) :
Equations
Instances For
    theorem prod_quotient_order_iso {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {b : β} :
    IsOrderIso fun (x : α) => Quot.mk (Function.curry (Function.identified_under Prod.fst)) (x, b)
    instance Quot.partialOrder_of {α : Type u_1} {r : Relation α α} [PartialOrder α] [r.IsEquivalence] (h' : ∀ (x y z : α), x yy zQuot.mk (Function.curry r) x = Quot.mk (Function.curry r) zQuot.mk (Function.curry r) x = Quot.mk (Function.curry r) y) :
    Equations
    theorem Monotone.identifiedUnder_weaklyOrderCompatible_iff {α : Type u_1} {β : Type u_2} {f : αβ} [Preorder α] [Preorder β] (h : Monotone f) :
    WeaklyOrderCompatible (Function.identified_under f) ∀ (x x' y : α), x yf x' = f x∃ (y' : α), f y' = f y x' y'