instance
instLEQuotCurry_bourbakiLean2
{α : Type u_1}
{r : Relation α α}
[LE α]
:
LE (Quot (Function.curry r))
Equations
- instLEQuotCurry_bourbakiLean2 = { le := fun (a b : Quot (Function.curry r)) => ∀ (x : α), Quot.mk (Function.curry r) x = a → ∃ (y : α), Quot.mk (Function.curry r) y = b ∧ x ≤ y }
instance
instPreorderQuotCurryOfIsEquivalence
{α : Type u_3}
{r : Relation α α}
[r.IsEquivalence]
[Preorder α]
:
Preorder (Quot (Function.curry r))
Equations
- instPreorderQuotCurryOfIsEquivalence = Preorder.mk ⋯ ⋯ ⋯
theorem
Quot.monotone_of_comp_monotone
{α : Type u_1}
{β : Type u_2}
{r : Relation α α}
[LE α]
[LE β]
{g : Quot (Function.curry r) → β}
(h : Monotone (g ∘ Quot.mk (Function.curry r)))
:
Monotone g
theorem
Quot.mk_monotone_iff
{α : Type u_1}
{r : Relation α α}
[Preorder α]
:
Monotone (Quot.mk (Function.curry r)) ↔ ∀ (x x' y : α),
x ≤ y →
Quot.mk (Function.curry r) x' = Quot.mk (Function.curry r) x →
∃ (y' : α), Quot.mk (Function.curry r) y' = Quot.mk (Function.curry r) y ∧ x' ≤ y'
Equations
Instances For
theorem
weaklyOrderCompatible_product_collapse
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[Preorder β]
:
WeaklyOrderCompatible (Function.identified_under Prod.fst)
theorem
prod_quotient_order_iso
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[Preorder β]
{b : β}
:
IsOrderIso fun (x : α) => Quot.mk (Function.curry (Function.identified_under Prod.fst)) (x, b)
instance
Quot.partialOrder_of
{α : Type u_1}
{r : Relation α α}
[PartialOrder α]
[r.IsEquivalence]
(h' :
∀ (x y z : α),
x ≤ y →
y ≤ z →
Quot.mk (Function.curry r) x = Quot.mk (Function.curry r) z →
Quot.mk (Function.curry r) x = Quot.mk (Function.curry r) y)
:
PartialOrder (Quot (Function.curry r))
Equations
theorem
Monotone.partialOrder_condition_quot
{α : Type u_1}
{β : Type u_2}
{f : α → β}
[Preorder α]
[PartialOrder β]
(h : Monotone f)
{x y z : α}
(xy : x ≤ y)
(yz : y ≤ z)
(eq :
Quot.mk (Function.curry (Function.identified_under f)) x = Quot.mk (Function.curry (Function.identified_under f)) z)
:
theorem
Monotone.identifiedUnder_weaklyOrderCompatible_iff
{α : Type u_1}
{β : Type u_2}
{f : α → β}
[Preorder α]
[Preorder β]
(h : Monotone f)
:
WeaklyOrderCompatible (Function.identified_under f) ↔ ∀ (x x' y : α), x ≤ y → f x' = f x → ∃ (y' : α), f y' = f y ∧ x' ≤ y'