noncomputable def
Set.IsCovering.glue_rel
{α : Type u_1}
{ι : Type u_3}
{x : ι → Set α}
(_h : Set.IsCovering x)
(f : (i : ι) → Relation ↥(x i) ↥(x i))
:
Relation α α
Equations
Instances For
@[simp]
theorem
Set.IsCovering.glue_rel_agrees
{α : Type u_1}
{ι : Type u_3}
{i : ι}
{x : ι → Set α}
[RightDirected ↥(x '' Set.univ)]
(h : Set.IsCovering x)
{f : (i : ι) → Relation ↥(x i) ↥(x i)}
(h' :
∀ (i j : ι) (sub : x i ⊆ x j) (a b : α) (ha : a ∈ x i) (hb : b ∈ x i),
(⟨a, ha⟩, ⟨b, hb⟩) ∈ f i ↔ (⟨a, ⋯⟩, ⟨b, ⋯⟩) ∈ f j)
(a b : α)
(ha : a ∈ x i)
(hb : b ∈ x i)
:
instance
Set.isPreorderColimit
{α : Type u_1}
{ι : Type u_3}
{x : ι → Set α}
[RightDirected ↥(x '' Set.univ)]
(h : Set.IsCovering x)
{f : (i : ι) → Relation ↥(x i) ↥(x i)}
[∀ (i : ι), IsPreorder (f i)]
(h' :
∀ (i j : ι) (sub : x i ⊆ x j) (a b : α) (ha : a ∈ x i) (hb : b ∈ x i),
(⟨a, ha⟩, ⟨b, hb⟩) ∈ f i ↔ (⟨a, ⋯⟩, ⟨b, ⋯⟩) ∈ f j)
:
IsPreorder (h.glue_rel f)
Equations
- ⋯ = ⋯
instance
Set.isPartialOrderColimit
{α : Type u_1}
{ι : Type u_3}
{x : ι → Set α}
[RightDirected ↥(x '' Set.univ)]
(h : Set.IsCovering x)
{f : (i : ι) → Relation ↥(x i) ↥(x i)}
[∀ (i : ι), IsPartialOrder (f i)]
(h' :
∀ (i j : ι) (sub : x i ⊆ x j) (a b : α) (ha : a ∈ x i) (hb : b ∈ x i),
(⟨a, ha⟩, ⟨b, hb⟩) ∈ f i ↔ (⟨a, ⋯⟩, ⟨b, ⋯⟩) ∈ f j)
:
IsPartialOrder (h.glue_rel f)
Equations
- ⋯ = ⋯
instance
Set.isTotalOrderColimit
{α : Type u_1}
{ι : Type u_3}
{x : ι → Set α}
[RightDirected ↥(x '' Set.univ)]
(h : Set.IsCovering x)
{f : (i : ι) → Relation ↥(x i) ↥(x i)}
[inst : ∀ (i : ι), IsTotalOrder (f i)]
(h' :
∀ (i j : ι) (sub : x i ⊆ x j) (a b : α) (ha : a ∈ x i) (hb : b ∈ x i),
(⟨a, ha⟩, ⟨b, hb⟩) ∈ f i ↔ (⟨a, ⋯⟩, ⟨b, ⋯⟩) ∈ f j)
:
IsTotalOrder (h.glue_rel f)
Equations
- ⋯ = ⋯