Documentation

BourbakiLean2.Order.Coverings

noncomputable def Set.IsCovering.glue_rel {α : Type u_1} {ι : Type u_3} {x : ιSet α} (_h : Set.IsCovering x) (f : (i : ι) → Relation (x i) (x i)) :
Relation α α
Equations
  • _h.glue_rel f = {pair : α × α | ∃ (i : ι), ∃ (a : (x i)), ∃ (b : (x i)), (a, b) f i pair.fst = a.val pair.snd = b.val}
Instances For
    @[simp]
    theorem Set.IsCovering.glue_rel_agrees {α : Type u_1} {ι : Type u_3} {i : ι} {x : ιSet α} [RightDirected (x '' Set.univ)] (h : Set.IsCovering x) {f : (i : ι) → Relation (x i) (x i)} (h' : ∀ (i j : ι) (sub : x i x j) (a b : α) (ha : a x i) (hb : b x i), (a, ha, b, hb) f i (a, , b, ) f j) (a b : α) (ha : a x i) (hb : b x i) :
    (a, b) h.glue_rel f (a, ha, b, hb) f i
    instance Set.isPreorderColimit {α : Type u_1} {ι : Type u_3} {x : ιSet α} [RightDirected (x '' Set.univ)] (h : Set.IsCovering x) {f : (i : ι) → Relation (x i) (x i)} [∀ (i : ι), IsPreorder (f i)] (h' : ∀ (i j : ι) (sub : x i x j) (a b : α) (ha : a x i) (hb : b x i), (a, ha, b, hb) f i (a, , b, ) f j) :
    IsPreorder (h.glue_rel f)
    Equations
    • =
    instance Set.isPartialOrderColimit {α : Type u_1} {ι : Type u_3} {x : ιSet α} [RightDirected (x '' Set.univ)] (h : Set.IsCovering x) {f : (i : ι) → Relation (x i) (x i)} [∀ (i : ι), IsPartialOrder (f i)] (h' : ∀ (i j : ι) (sub : x i x j) (a b : α) (ha : a x i) (hb : b x i), (a, ha, b, hb) f i (a, , b, ) f j) :
    IsPartialOrder (h.glue_rel f)
    Equations
    • =
    instance Set.isTotalOrderColimit {α : Type u_1} {ι : Type u_3} {x : ιSet α} [RightDirected (x '' Set.univ)] (h : Set.IsCovering x) {f : (i : ι) → Relation (x i) (x i)} [inst : ∀ (i : ι), IsTotalOrder (f i)] (h' : ∀ (i j : ι) (sub : x i x j) (a b : α) (ha : a x i) (hb : b x i), (a, ha, b, hb) f i (a, , b, ) f j) :
    IsTotalOrder (h.glue_rel f)
    Equations
    • =