Documentation

BourbakiLean2.Set.FiniteCharacter

class FiniteCharacter {α : Type u_1} (s : Set (Set α)) :
Instances
    theorem mem_iff_finite_subset_mem {α : Type u_1} {s : Set (Set α)} [FiniteCharacter s] {x : Set α} :
    x s ∀ (y : Set α), y xFinite yy s
    instance instFiniteCharacterUnivSet {α : Type u_1} :
    Equations
    • =
    Equations
    • =
    instance instFiniteCharacterIInterSet {α : Type u_1} {ι : Type u_2} {s : ιSet (Set α)} [∀ (i : ι), FiniteCharacter (s i)] :
    FiniteCharacter (⋂ i : ι, s i)
    Equations
    • =
    instance totally_ordered_finiteCharacter {α : Type u_1} [PartialOrder α] :
    FiniteCharacter {s : Set α | ∀ (x y : s), Comparable x y}
    Equations
    • =
    instance FiniteCharacter.inductiveOrder {α : Type u_1} {s : Set (Set α)} [FiniteCharacter s] (ne : s.Nonempty) :
    Equations
    • =
    theorem FiniteCharacter.has_maximal {α : Type u_1} {s : Set (Set α)} (h : FiniteCharacter s) (ne : s.Nonempty) :
    ∃ (x : s), Maximal x