Documentation

BourbakiLean2.Order.Sum

instance instPreorderSigmaOfPartialOrder {ι : Type u_1} {x : ιType u_2} [PartialOrder ι] [(i : ι) → Preorder (x i)] :
Equations
instance instPartialOrderSigma {ι : Type u_1} {x : ιType u_2} [PartialOrder ι] [(i : ι) → PartialOrder (x i)] :
Equations
theorem le_of_index_lt {ι : Type u_1} {x : ιType u_2} {i j : ι} {a : x i} {b : x j} [PartialOrder ι] [(i : ι) → Preorder (x i)] (h : i < j) :
i, a j, b
theorem lt_of_index_lt {ι : Type u_1} {x : ιType u_2} {i j : ι} {a : x i} {b : x j} [PartialOrder ι] [(i : ι) → Preorder (x i)] (h : i < j) :
i, a < j, b
theorem index_le_of_le {ι : Type u_1} {x : ιType u_2} {i j : ι} {a : x i} {b : x j} [PartialOrder ι] [(i : ι) → Preorder (x i)] (h : i, a j, b) :
i j
@[simp]
theorem le_same_index_iff {ι : Type u_1} {x : ιType u_2} {i : ι} {a b : x i} [PartialOrder ι] [(i : ι) → Preorder (x i)] :
i, a i, b a b
@[simp]
theorem lt_same_index_iff {ι : Type u_1} {x : ιType u_2} {i : ι} {a b : x i} [PartialOrder ι] [(i : ι) → Preorder (x i)] :
i, a < i, b a < b
theorem sigma_order_quotient_iso_index {ι : Type u_1} {x : ιType u_2} [PartialOrder ι] [(i : ι) → Preorder (x i)] [ne : ∀ (i : ι), Nonempty (x i)] :
IsOrderIso fun (i : ι) => Quot.mk (Function.curry (Function.identified_under fun (a : Sigma x) => a.fst)) i, Classical.choice
theorem sum_order_assoc {ι : Type u_3} {ι' : ιType u_4} {x : (i : ι) → ι' iType u_5} [PartialOrder ι] [(i : ι) → PartialOrder (ι' i)] [(i : ι) → (i' : ι' i) → Preorder (x i i')] :
IsOrderIso fun (x_1 : (x_1 : Sigma ι') × match x_1 with | _j, _j' => x _j _j') => match x_1 with | i, i', a => i, i', a
theorem sum_rightDirected_iff {ι : Type u_1} {x : ιType u_2} [PartialOrder ι] [(i : ι) → Preorder (x i)] [ne : ∀ (i : ι), Nonempty (x i)] :
RightDirected (Sigma x) RightDirected ι ∀ (i : ι), Maximal iRightDirected (x i)